Tahun 2010, Pengerukan 13 Sungai di Jakarta
Senin, 5 Mei 2008 | 01:16 WIB
Jakarta, Kompas - Pemerintah Provinsi DKI Jakarta menargetkan akan menormalisasi 13 sungai yang mengaliri Ibu Kota, khususnya pengerukan endapan sampah dan lumpur, pada tahun 2010. Proyek ini dilakukan pasca-proyek Banjir Kanal Timur yang ditargetkan selesai pada tahun 2009.
”Ini adalah upaya pemerintah untuk membebaskan Jakarta dari banjir. Pengerukan 13 sungai ini akan mendapat bantuan dari Bank Dunia,” kata Wakil Gubernur DKI Prijanto saat membuka Pekan Milad Ke-80 Persatuan Tarbiyah Islamiyah, sekaligus meresmikan bazar dan pasar murah sembako di Lapangan Banteng, Jakarta Pusat, Sabtu (3/5).
Prijanto menambahkan, ia mengucapkan terima kasih kepada warga Ibu Kota yang telah merelakan tanahnya dibebaskan untuk proyek Banjir Kanal Timur (BKT). Bagi yang belum dimohon segera menyelesaikannya karena ini menyangkut keselamatan hidup semua warga Jakarta. Sedikitnya 21.000 hektar kawasan Jakarta akan bebas banjir jika BKT berfungsi.
Selain BKT dan normalisasi sungai, sistem drainase di seluruh penjuru Jakarta juga akan diperbaiki. Selama ini, buruknya sistem drainase di permukiman dan di ruas-ruas jalan dituding sebagai penyebab terjadinya banjir lokal di kawasan-kawasan tertentu, seperti yang terjadi pada 1 Februari 2008.
Namun, kata Prijanto, sumbatan sampah di saluran-saluran drainase dan sungai mencerminkan perilaku warga yang tidak peduli lingkungan. ”Jangan minta tidak banjir kalau perilaku kita sebagai warga masih suka seenaknya sendiri buang sampah sembarangan, di selokan dan sungai,” katanya.
Berdasarkan catatan Kompas, penyebab banjir di Jakarta selalu dikaitkan dengan gundulnya hutan di Bogor, Jawa Barat, yang seharusnya jadi kawasan tangkapan air. Selain itu, pendangkalan 13 sungai yang mengaliri Jakarta, sistem drainase di Ibu Kota yang buruk, serta perilaku warganya yang tak peduli lingkungan.
Pengamat lingkungan Institut Teknologi Bandung The Houw Liong pernah menyebutkan bahwa banjir kanal di Jakarta hanya bertujuan jangka pendek. Dengan adanya banjir kanal tersebut, permukaan tanah Jakarta makin turun. Ketersediaan air tawar di musim kemarau juga akan kian menyusut.
Menurut The Houw Liong, teror banjir air sungai mungkin tidak lagi terjadi ketika banjir kanal berfungsi. Akan tetapi, rob atau genangan laut pasang dan krisis air tawar akan menjadi teror baru di Jakarta di kemudian hari. (NEL)
Komentar :
Banjir kanal hanya bisa melindungi daerah sekitar banjir kanal tsb., banjir masih bisa terjadi sebelum masuk ke banjir kanal jika normalisasi sungai dan membangun daerah resapan/penampungan air di hulu tidak berhasil dilaksanakan.
(HouwLiong)
Indonesia harus mampu mengembangkan sains dan teknologi yang ramah lingkungan sesuai dengan perkembangannya di tanah air, tanpa teknologi yang boros sumber alam dan energi.
Hal yang penting juga ialah memahami dan menghayati filsafat sains untuk bisa menyatakan kebenaran ilmiah dan bisa membedakannya dengan "kebenaran" yang diperoleh dengan cara lain.
The Houw Liong
http://LinkedIn.com/in/houwliong
28 February 2009
27 February 2009
Regional Variations in Radiative Forcing
“The 2005 National Research Council report concluded that:
“regional variations in radiative forcing may have important regional and global climate implications that are not resolved by the concept of global mean radiative forcing.”
And furthermore:
“Regional diabatic heating can cause atmospheric teleconnections that influence regional climate thousands of kilometers away from the point of forcing.”
This regional diabatic heating produces temperature increases or decreases in the layer-averaged regional troposphere. This necessarily alters the regional pressure fields and thus the wind pattern. This pressure and wind pattern then affects the pressure and wind patterns at large distances from the region of the forcing which we refer to as teleconnections.
The regional diabatic forcing can be caused by land-use/land-cover change (e.g. , Chase et al. 2000) or by aerosol emissions. Even natural surface variations such as in ocean color produce such teleconnections in a general circulation model (see Atmospheric response to solar radiation absorbed by phytoplankton )
There is debate, however, regarding whether the magnitude of the regional diabatic forcing is large enough to result in long distance teleconnections. However, observed multi-decadal trends in tropospheric-averaged temperatures are large enough to result in large-scale circulation trends (see, for example, A Comparison of Regional Trends in 1979-1997 Depth-Averaged Tropospheric Temperaturesfor the magnitude of the 1979-1997 regional trends). Thus land-use/land-cover changes and aerosol clouds that produce regional tropospheric temperature anomalies of a similar magnitude (or larger magnitude) would be expected to have significant teleconnection effects.
If this is true, than regional diabatic heating due to human activities represents a major, but under-recognized climate forcing, on long-term global weather patterns. Indeed, this heterogenous climate forcing may be more important on the weather that we experience than changes in weather patterns associated with the more homogeneous spatial radiative forcing of the well-mixed greenhouse gases (see the NASA press release, which is based on the multi-authored paper The influence of land-use change and landscape dynamics on the climate system: relevance to climate change policy beyond the radiative effect of greenhouse gases).
http://www.nap.edu/openbook.php?isbn=0309095069
“regional variations in radiative forcing may have important regional and global climate implications that are not resolved by the concept of global mean radiative forcing.”
And furthermore:
“Regional diabatic heating can cause atmospheric teleconnections that influence regional climate thousands of kilometers away from the point of forcing.”
This regional diabatic heating produces temperature increases or decreases in the layer-averaged regional troposphere. This necessarily alters the regional pressure fields and thus the wind pattern. This pressure and wind pattern then affects the pressure and wind patterns at large distances from the region of the forcing which we refer to as teleconnections.
The regional diabatic forcing can be caused by land-use/land-cover change (e.g. , Chase et al. 2000) or by aerosol emissions. Even natural surface variations such as in ocean color produce such teleconnections in a general circulation model (see Atmospheric response to solar radiation absorbed by phytoplankton )
There is debate, however, regarding whether the magnitude of the regional diabatic forcing is large enough to result in long distance teleconnections. However, observed multi-decadal trends in tropospheric-averaged temperatures are large enough to result in large-scale circulation trends (see, for example, A Comparison of Regional Trends in 1979-1997 Depth-Averaged Tropospheric Temperaturesfor the magnitude of the 1979-1997 regional trends). Thus land-use/land-cover changes and aerosol clouds that produce regional tropospheric temperature anomalies of a similar magnitude (or larger magnitude) would be expected to have significant teleconnection effects.
If this is true, than regional diabatic heating due to human activities represents a major, but under-recognized climate forcing, on long-term global weather patterns. Indeed, this heterogenous climate forcing may be more important on the weather that we experience than changes in weather patterns associated with the more homogeneous spatial radiative forcing of the well-mixed greenhouse gases (see the NASA press release, which is based on the multi-authored paper The influence of land-use change and landscape dynamics on the climate system: relevance to climate change policy beyond the radiative effect of greenhouse gases).
http://www.nap.edu/openbook.php?isbn=0309095069
26 February 2009
ADDRESSING CLIMATE CHANGE IN INDONESIA
ADDRESSING CLIMATE CHANGE IN INDONESIA
The State Department and the U.S. Trade Representative have negotiated with the Indonesian Ministries of Trade and Forestry the U.S. Government’s first Memorandumof Understanding on Combating Illegal Logging and Associated Trade. Presidents George W. Bush and Susilo Bambang Yudhoyono announced the MOU during the U.S. President’s November, 2006 visit to Indonesia. Implementation of the MOU includes collaboration on sustainable forest management, improved law enforcement, and improved markets for legally harvested timber products. This effort will strengthen the enabling conditions for avoiding deforestation, specifically addressing the trade issues that are involved. The State Department contributed to a Heart of Borneo conservation initiative spearheaded by World Wildlife Fund (WWF). This program works to conserve a high biodiversity, trans-boundary area that includes parts of Indonesia, Malaysia and Brunei. In conjunction with the Heart of Borneo initiative, the 2008 International Visitor’s Leadership Program has provided special funding for a group of professionals from Indonesia, Malaysia and Brunei to discuss key environmental management issues with U.S. counterparts. The Governments of Indonesia and the U.S. are currently discussing the Tropical Forest Conservation Act (TFCA) program. Under the program, a portion of the Government of Indonesia’s debt to the U.S. government may be reduced and redirected toward tropical forest conservation in Indonesia. REDUCING ENERGY EMISSIONS The USAID-supported AMARTA program is developing a pilot project for small-scale production of bio-fuel from Jatropha curcas (castor oil trees) in Flores, Nusa Tenggara Timur. AMARTA is providing a local producers cooperative with equipment to press Jatropha seed, producing a kerosene substitute and other valuable compounds. AMARTA is also providing approximately 140,000 Jatropha seedlings; assistance inestablishing a nursery; and secondary equipment with which to produce bio-diesel fuelsuitable for small engines. This is a promising demonstration project for two reasons. First, Jatropha thrives in dry, marginal soils and might serve as an alternative to palm oil, which often leads to the clearing of high-carbon, high biodiversity value forests for the creation of new plantations. Second, bio-fuel produced with Jatropha oil emits 78% less greenhouse gases than conventional diesel fuel. ASSISTING INTERDICTION IN ILLEGAL LOGGING The Indonesia Criminal Investigative Division and Marine Police will soon have a newtool in its war against Indonesia’s illegal logging industry. The USG, led by the Department of Justice’s (DOJ) International Criminal Investigative Training Assistance Program (ICITAP) Indonesia, will be providing forensic kits and backpacks to be used by investigators in collecting forensic evidence for illegal logging cases. ICITAP willalso train and provide technical assistance to the Indonesian National Police in illegal logging interdiction and investigative strategies. ICITAP Indonesia, with funding under the illegal logging MoU, will train sections of the Criminal Investigative Division, the Marine Police and other law enforcement units responsible for protecting critical habitat areas and forests – such as Batam-Riau, Kalimantan, the Indonesian part of Borneo. Under the illegal logging MoU, the U.S Forest Service and Customs and Border Protection are training Indonesian customs agents and police, whie the Office of the U.S. Trade Representative is providing Indonesia with U.S. import data to help identify illegal exports of timber products form Indonesia. ICITAP will also work withUS DOJ’s Office of Overseas Prosecutorial Development, Assistance and Training to train and educate prosecutors from the regional Indonesia Attorney General’s Office on building effective prosecution strategies for illegal logging cases.
http://209.85.175.132/search?q=cache:bkJM7DiP6dwJ:www.usembassyjakarta.org/Climate_Change_Page/Climate%2520Fact%2520Sheet%252012_1_7%2520Bali%2520COP_2_srb%2520_2_.pdf+climate+change+in+indonesia&hl=id&ct=clnk&cd=5&gl=id
The State Department and the U.S. Trade Representative have negotiated with the Indonesian Ministries of Trade and Forestry the U.S. Government’s first Memorandumof Understanding on Combating Illegal Logging and Associated Trade. Presidents George W. Bush and Susilo Bambang Yudhoyono announced the MOU during the U.S. President’s November, 2006 visit to Indonesia. Implementation of the MOU includes collaboration on sustainable forest management, improved law enforcement, and improved markets for legally harvested timber products. This effort will strengthen the enabling conditions for avoiding deforestation, specifically addressing the trade issues that are involved. The State Department contributed to a Heart of Borneo conservation initiative spearheaded by World Wildlife Fund (WWF). This program works to conserve a high biodiversity, trans-boundary area that includes parts of Indonesia, Malaysia and Brunei. In conjunction with the Heart of Borneo initiative, the 2008 International Visitor’s Leadership Program has provided special funding for a group of professionals from Indonesia, Malaysia and Brunei to discuss key environmental management issues with U.S. counterparts. The Governments of Indonesia and the U.S. are currently discussing the Tropical Forest Conservation Act (TFCA) program. Under the program, a portion of the Government of Indonesia’s debt to the U.S. government may be reduced and redirected toward tropical forest conservation in Indonesia. REDUCING ENERGY EMISSIONS The USAID-supported AMARTA program is developing a pilot project for small-scale production of bio-fuel from Jatropha curcas (castor oil trees) in Flores, Nusa Tenggara Timur. AMARTA is providing a local producers cooperative with equipment to press Jatropha seed, producing a kerosene substitute and other valuable compounds. AMARTA is also providing approximately 140,000 Jatropha seedlings; assistance inestablishing a nursery; and secondary equipment with which to produce bio-diesel fuelsuitable for small engines. This is a promising demonstration project for two reasons. First, Jatropha thrives in dry, marginal soils and might serve as an alternative to palm oil, which often leads to the clearing of high-carbon, high biodiversity value forests for the creation of new plantations. Second, bio-fuel produced with Jatropha oil emits 78% less greenhouse gases than conventional diesel fuel. ASSISTING INTERDICTION IN ILLEGAL LOGGING The Indonesia Criminal Investigative Division and Marine Police will soon have a newtool in its war against Indonesia’s illegal logging industry. The USG, led by the Department of Justice’s (DOJ) International Criminal Investigative Training Assistance Program (ICITAP) Indonesia, will be providing forensic kits and backpacks to be used by investigators in collecting forensic evidence for illegal logging cases. ICITAP willalso train and provide technical assistance to the Indonesian National Police in illegal logging interdiction and investigative strategies. ICITAP Indonesia, with funding under the illegal logging MoU, will train sections of the Criminal Investigative Division, the Marine Police and other law enforcement units responsible for protecting critical habitat areas and forests – such as Batam-Riau, Kalimantan, the Indonesian part of Borneo. Under the illegal logging MoU, the U.S Forest Service and Customs and Border Protection are training Indonesian customs agents and police, whie the Office of the U.S. Trade Representative is providing Indonesia with U.S. import data to help identify illegal exports of timber products form Indonesia. ICITAP will also work withUS DOJ’s Office of Overseas Prosecutorial Development, Assistance and Training to train and educate prosecutors from the regional Indonesia Attorney General’s Office on building effective prosecution strategies for illegal logging cases.
http://209.85.175.132/search?q=cache:bkJM7DiP6dwJ:www.usembassyjakarta.org/Climate_Change_Page/Climate%2520Fact%2520Sheet%252012_1_7%2520Bali%2520COP_2_srb%2520_2_.pdf+climate+change+in+indonesia&hl=id&ct=clnk&cd=5&gl=id
APLIKASI SOFT COMPUTING PADA PREDIKSI CURAH HUJAN DI KALIMANTAN
APLIKASI SOFT COMPUTING PADA PREDIKSI CURAH HUJAN DI KALIMANTAN
Oleh :
Deni Septiadi
NIM : 22406002
Pembimbing :
Prof. Dr. Bayong Tj H K
Prof Dr. The Houw Liong
Analisis clustering curah hujan menggunakan jaringan kompetitif Kohonen menghasilkan 5 kolompok wilayah yang disebut zona prediksi. Sementara itu spektrum data memperlihatkan sinyal sunspot hadir dalam deret waktu data curah hujan di semua zona prediksi dengan magnitude terbesar pada zona prediksi 2 yang mengindikasikan bahwa zona tersebut memberikan respon langsung pada fenomena sunspot. Peranan aktivitas matahari pada saat bilangan sunspot tinggi yang sering memancarkan flare dan CME mempengaruhi medan magnetik interplaneter sehingga berkaitan dengan variabilitas fluks sinar kosmik yang menembus atmosfer Bumi dan bervariasi terhadap lintang.
Prediksi curah hujan bulanan dengan Metode ANFIS maupun Jajaringan Neural dilakukan dengan menggunakan 1 prediktor (curah hujan) dan 2 prediktor (kombinasi antara sinar kosmik dan sunspot) dengan panjang data bervariasi yaitu 45 tahun, 30 tahun, dan 15 tahun serta panjang data 46 tahun untuk prediksi tahunan 2007-2020.
Secara keseluruhan keluaran Metode ANFIS 1 prediktor menunjukkan nilai rata2 RMSE (Root Mean Square Error) yang lebih kecil untuk prediksi bulanan. Namun pada prediksi tahunan, Metode ANFIS 2 prediktor menunjukkan hasil yang lebih baik. Dengan demikian fenomena sunspot dan sinar kosmik sebagai prediktor perlu dipertimbangkan dalam melakukan prediksi jangka panjang karena memberikan akurasi yang lebih baik dibandingkan dengan jika hanya menggunakan curah hujan sebagai prediktor.
Kata kunci : Analisis clustering, Jaringan kompetitif, Zona prediksi, Spektrum data, ANFIS, Jaringan Neural, RMSE, Fluks sinar kosmik
Oleh :
Deni Septiadi
NIM : 22406002
Pembimbing :
Prof. Dr. Bayong Tj H K
Prof Dr. The Houw Liong
Analisis clustering curah hujan menggunakan jaringan kompetitif Kohonen menghasilkan 5 kolompok wilayah yang disebut zona prediksi. Sementara itu spektrum data memperlihatkan sinyal sunspot hadir dalam deret waktu data curah hujan di semua zona prediksi dengan magnitude terbesar pada zona prediksi 2 yang mengindikasikan bahwa zona tersebut memberikan respon langsung pada fenomena sunspot. Peranan aktivitas matahari pada saat bilangan sunspot tinggi yang sering memancarkan flare dan CME mempengaruhi medan magnetik interplaneter sehingga berkaitan dengan variabilitas fluks sinar kosmik yang menembus atmosfer Bumi dan bervariasi terhadap lintang.
Prediksi curah hujan bulanan dengan Metode ANFIS maupun Jajaringan Neural dilakukan dengan menggunakan 1 prediktor (curah hujan) dan 2 prediktor (kombinasi antara sinar kosmik dan sunspot) dengan panjang data bervariasi yaitu 45 tahun, 30 tahun, dan 15 tahun serta panjang data 46 tahun untuk prediksi tahunan 2007-2020.
Secara keseluruhan keluaran Metode ANFIS 1 prediktor menunjukkan nilai rata2 RMSE (Root Mean Square Error) yang lebih kecil untuk prediksi bulanan. Namun pada prediksi tahunan, Metode ANFIS 2 prediktor menunjukkan hasil yang lebih baik. Dengan demikian fenomena sunspot dan sinar kosmik sebagai prediktor perlu dipertimbangkan dalam melakukan prediksi jangka panjang karena memberikan akurasi yang lebih baik dibandingkan dengan jika hanya menggunakan curah hujan sebagai prediktor.
Kata kunci : Analisis clustering, Jaringan kompetitif, Zona prediksi, Spektrum data, ANFIS, Jaringan Neural, RMSE, Fluks sinar kosmik
Space Weather Prediction Center moves the solar cycle goalpost again
Space Weather Prediction Center moves the solar cycle goalpost again
25-02-2009
Mike Ronanye writes:
SWPC has just made a change in their solar cycle predictions in the middle of the month without any preannouncement. Both Sunspot and F10.7cm predictions were altered significantly.
You can see the last monthly summary here which I have been complaining reporting about, here:
http://www.swpc.noaa.gov/weekly/pdf/prf1745.pdf
This should have been the January 2009 summary but SWPC recycled the December 2008 summary.
I looked for but was unable to find any press releases. Please search for any additional information and post it here. If you downloaded any SWPC data or graphics hold on to it. I will be updating my SWPC Sunspot animation.
« Japan’s Society of Energy and Resources disses the IPCC - says “recent climate change is driven by natural cycles, not human industrial activity”
25 February 2009
Global Warming ???
Over 650 Scientists Challenge Global Warming "Consensus"
Twelve times more than those that put their names to the IPCC report
Steve Watson
Infowars.net
Wednesday, Dec 10, 2008
The following quotes, listed on the website of the US Senate Committee on Environment and Public Works, provide a taster of what will be contained in the upcoming Senate report:
“I am a skeptic…Global warming has become a new religion.” - Nobel Prize Winner for Physics, Ivar Giaever.
“Since I am no longer affiliated with any organization nor receiving any funding, I can speak quite frankly….As a scientist I remain skeptical.” - Atmospheric Scientist Dr. Joanne Simpson, the first woman in the world to receive a PhD in meteorology and formerly of NASA who has authored more than 190 studies and has been called “among the most preeminent scientists of the last 100 years.”
Warming fears are the “worst scientific scandal in the history…When people come to know what the truth is, they will feel deceived by science and scientists.” - UN IPCC Japanese Scientist Dr. Kiminori Itoh, an award-winning PhD environmental physical chemist.
“The IPCC has actually become a closed circuit; it doesn’t listen to others. It doesn’t have open minds… I am really amazed that the Nobel Peace Prize has been given on scientifically incorrect conclusions by people who are not geologists,” - Indian geologist Dr. Arun D. Ahluwalia at Punjab University and a board member of the UN-supported International Year of the Planet.
“The models and forecasts of the UN IPCC "are incorrect because they only are based on mathematical models and presented results at scenarios that do not include, for example, solar activity.” - Victor Manuel Velasco Herrera, a researcher at the Institute of Geophysics of the National Autonomous University of Mexico
“It is a blatant lie put forth in the media that makes it seem there is only a fringe of scientists who don’t buy into anthropogenic global warming.” - U.S Government Atmospheric Scientist Stanley B. Goldenberg of the Hurricane Research Division of NOAA.
“Even doubling or tripling the amount of carbon dioxide will virtually have little impact, as water vapour and water condensed on particles as clouds dominate the worldwide scene and always will.” – . Geoffrey G. Duffy, a professor in the Department of Chemical and Materials Engineering of the University of Auckland, NZ.
“After reading [UN IPCC chairman] Pachauri's asinine comment [comparing skeptics to] Flat Earthers, it's hard to remain quiet.” - Climate statistician Dr. William M. Briggs, who specializes in the statistics of forecast evaluation, serves on the American Meteorological Society's Probability and Statistics Committee and is an Associate Editor of Monthly Weather Review.
Twelve times more than those that put their names to the IPCC report
Steve Watson
Infowars.net
Wednesday, Dec 10, 2008
The following quotes, listed on the website of the US Senate Committee on Environment and Public Works, provide a taster of what will be contained in the upcoming Senate report:
“I am a skeptic…Global warming has become a new religion.” - Nobel Prize Winner for Physics, Ivar Giaever.
“Since I am no longer affiliated with any organization nor receiving any funding, I can speak quite frankly….As a scientist I remain skeptical.” - Atmospheric Scientist Dr. Joanne Simpson, the first woman in the world to receive a PhD in meteorology and formerly of NASA who has authored more than 190 studies and has been called “among the most preeminent scientists of the last 100 years.”
Warming fears are the “worst scientific scandal in the history…When people come to know what the truth is, they will feel deceived by science and scientists.” - UN IPCC Japanese Scientist Dr. Kiminori Itoh, an award-winning PhD environmental physical chemist.
“The IPCC has actually become a closed circuit; it doesn’t listen to others. It doesn’t have open minds… I am really amazed that the Nobel Peace Prize has been given on scientifically incorrect conclusions by people who are not geologists,” - Indian geologist Dr. Arun D. Ahluwalia at Punjab University and a board member of the UN-supported International Year of the Planet.
“The models and forecasts of the UN IPCC "are incorrect because they only are based on mathematical models and presented results at scenarios that do not include, for example, solar activity.” - Victor Manuel Velasco Herrera, a researcher at the Institute of Geophysics of the National Autonomous University of Mexico
“It is a blatant lie put forth in the media that makes it seem there is only a fringe of scientists who don’t buy into anthropogenic global warming.” - U.S Government Atmospheric Scientist Stanley B. Goldenberg of the Hurricane Research Division of NOAA.
“Even doubling or tripling the amount of carbon dioxide will virtually have little impact, as water vapour and water condensed on particles as clouds dominate the worldwide scene and always will.” – . Geoffrey G. Duffy, a professor in the Department of Chemical and Materials Engineering of the University of Auckland, NZ.
“After reading [UN IPCC chairman] Pachauri's asinine comment [comparing skeptics to] Flat Earthers, it's hard to remain quiet.” - Climate statistician Dr. William M. Briggs, who specializes in the statistics of forecast evaluation, serves on the American Meteorological Society's Probability and Statistics Committee and is an Associate Editor of Monthly Weather Review.
Ciliwung Basin Flood
Undergraduate Theses from JBPTITBGD / 2005-05-12 11:52:15
Oleh : LA ODE MUHAMMAD GOLOK JAYA, Jurusan Tehnik Geodesi FTSP-ITB
Dibuat : 2003.
The research was aimed to analyse flood susceptibility using some of spatial data. Food susceptibility can be predicted by modeling the runoff. The case study of this research is Ciliwung Basin flood. Some of spatial data such as land use, stream pattern texture, topographic condition, soil type and precipitation are the part of secure factors to predict the flood which occasionally penetrate Jakarta.
Tie prediction of flood in a certain precipitation can be done using HEC-1 model as an it terface of Watershed Modelling System (WMS) software. By comparing with the stream capacity, the runoff flow can be calculated.
The result of this research shows us that the flood will occure in 80 mm/day precipitation or more with the runoff volume range between 1,8 million m3 up to 13 million m3 a day. The flood potential area is shown by the Map of Flood Susceptibility Area in DKI Jakarta.
ANFIS UNTUK PREDIKSI IKLIM DI PERMUKAAN LAUT
PENGGUNAAN MODEL ANFIS UNTUK PREDIKSI IKLIM DI PERMUKAAN LAUT
Master Theses from JBPTITBGEOPH / 2004-01-09 14:12:52
Oleh : Rosyid, Program_in_Meteorology
Dibuat : 2002-01-09, dengan 0 file
Keyword : Model Anfis, Prediksi Iklim
Url : http://
Model ANFIS telah dimanfaatkan untuk melakukan prediksi curah hujan dan kecepatan angin wilayah mulai dari Laut Jawa sampai dengan Laut Natuna. Data curah hujan bulanan selama 15 tahun dan data kecepatan angin bulanan selama 11 tahun digunakan dalam penelitian ini. Untuk curah hujan, data 12 tahun pertama digunakan sebagai pembelajaran, data 3 tahun kemudian digunakan sebagai validasi atau checking dan prediksi akhir digunakan data 15 tahun. Untuk kecepatan angin, data 8 tahun pertama digunakan sebagai pembelajaran, data 3 tahun kemudian digunakan sebagai validasi atau checking, prediksi akhir digunakan data 11 tahun.
Hasil validasi diperoleh rata-rata RMSE 0,11 untuk curah hujan, sedang untuk kecepatan angin diperoleh rata-rata RMSE 0,15. Hasil prediksi menunjukkan curah hujan di Laut Jawa didominasi oleh pengaruh monsun, hujan di Selat Karimata dipengaruhi kuat oleh aktivitas konveksi di zona ITCZ, hujan di Laut Natuna lebih dipengaruhi monsun meskipun pengaruh ITCZ juga masih tampak. Hasil prediksi kecepatan angin menunjukkan di Laut Jawa, Selat Karimata bagian timur dan tengah kecepatan angin maksimum terjadi pada musim timur, sedangkan Selat Karimata bagian barat sampai dengan Natuna kecepatan angin meningkat baik pada musim timur maupun musim barat
Master Theses from JBPTITBGEOPH / 2004-01-09 14:12:52
Oleh : Rosyid, Program_in_Meteorology
Dibuat : 2002-01-09, dengan 0 file
Keyword : Model Anfis, Prediksi Iklim
Url : http://
Model ANFIS telah dimanfaatkan untuk melakukan prediksi curah hujan dan kecepatan angin wilayah mulai dari Laut Jawa sampai dengan Laut Natuna. Data curah hujan bulanan selama 15 tahun dan data kecepatan angin bulanan selama 11 tahun digunakan dalam penelitian ini. Untuk curah hujan, data 12 tahun pertama digunakan sebagai pembelajaran, data 3 tahun kemudian digunakan sebagai validasi atau checking dan prediksi akhir digunakan data 15 tahun. Untuk kecepatan angin, data 8 tahun pertama digunakan sebagai pembelajaran, data 3 tahun kemudian digunakan sebagai validasi atau checking, prediksi akhir digunakan data 11 tahun.
Hasil validasi diperoleh rata-rata RMSE 0,11 untuk curah hujan, sedang untuk kecepatan angin diperoleh rata-rata RMSE 0,15. Hasil prediksi menunjukkan curah hujan di Laut Jawa didominasi oleh pengaruh monsun, hujan di Selat Karimata dipengaruhi kuat oleh aktivitas konveksi di zona ITCZ, hujan di Laut Natuna lebih dipengaruhi monsun meskipun pengaruh ITCZ juga masih tampak. Hasil prediksi kecepatan angin menunjukkan di Laut Jawa, Selat Karimata bagian timur dan tengah kecepatan angin maksimum terjadi pada musim timur, sedangkan Selat Karimata bagian barat sampai dengan Natuna kecepatan angin meningkat baik pada musim timur maupun musim barat
24 February 2009
SOLAR ACTIVITY A DOMINANT FACTOR IN CLIMATE DYNAMICS (2)
SOLAR ACTIVITY A DOMINANT FACTOR IN CLIMATE DYNAMICS
by
Dr Theodor Landscheidt
Schroeter Institute for Research in Cycles of Solar Activity
Nova Scotia, Canada
Those scientists who spread anxiety in the eighties by predicting climate catastrophees cannot plead that at this time there were not any publications pointing to a relation between solar activity and climate that had to be taken seriously. The relationship in Figure was presented at the international climate symposium “Weather and Climate Responses to Solar Variations” in Boulder, Colorado, as early as 1982 [55]. The plot shows a temperature time series after H. H. Lamb and C. D. Schönwiese at the bottom, radiocarbon data after J. E. Eddy [16] — proxy data reflecting solar activity — covering the interval 1000 to 1950 at the top, and in the middle data I had derived from a semiquantitative model of cyclic solar activity. S and M mark the Spoerer minimum and the Maunder minimum of sunspot activity, while O points to the medieval climate optimum which coincided with very strong solar activity. The synchronism of these three time series, covering 950 years, extends the connection elaborated by Friis-Christensen and Lassen 550 years farther back into the past and opens a possibility of long-range forecasts, as the data in the second curve are based on calculations that can be extended far into the future. On this basis, I forecasted, in 1982, that we should expect declining temperatures after 1990 and probably a new Little Ice Age around 2030. In further papers I specified this prediction [58, 59, 63]. I also expected considerably weaker sunspot activity after 1990. The slowly ascending new sunspot cycle, which started in May 1996, seems to follow the predicted trend.
SOLAR ACTIVITY A DOMINANT FACTOR IN CLIMATE DYNAMICS(1)
SOLAR ACTIVITY A DOMINANT FACTOR IN CLIMATE DYNAMICS
by
Dr Theodor Landscheidt
Schroeter Institute for Research in Cycles of Solar Activity
Nova Scotia, Canada
“Solar Constant” Variations in the 11-Year Sunspot Cycle and Climatic Effects
Atmospheric circulation, the cause of weather, is driven by the sun’s energy. Climate is the integral of weather over periods of more than a year. This integral also depends on the flux of solar energy. The same applies to variations in the energy flux caused by the sun’s varying activity. Satellite data show that the “solar constant” S is variable. The solar irradiance decreased from the sunspot maximum 1979 to the minimum 1986, increased again on the way to the next maximum in the 11-year sunspot cycle, and decreased anew in the descending phase. This came as a surprise as it is plausible that the dark sunspots with their strong magnetic fields impede the free flux of energy from the sun’s interior to the outside. Yet P. V. Foukal and J. Lean [22] have shown that bright faculae in the vicinity of sunspots increase even more than sunspots when the activity grows stronger, so that an irradiance surplus is established.
IPCC scientists hold that the corresponding variation in the solar constant (Delta S) is smaller than 0.1% and has no impact on climate that could count in comparison with the greenhouse effect [94]. Yet they fail to appreciate that quotes of 0.1% in the literature refer to the absolute amplitude of the sinusoidal variation in the solar constant, not the whole change from minimum to maximum, or from maximum to minimum [25, 32, 39]. Figure 1 after C. Fröhlich [25] shows this distinctly. The data at the top of the figure, designated by `HF', represent NIMBUS-7 measurements. The smoothed curve shows the 81-day running average related to the interval of three solar rotations of 27days. The horizontal axis indicates the investigated period, above in years, below in days since the first day of 1980. The vertical axis measures the solar constant S in W/m2. The scale in the middle of Figure 1 indicates the range of 0.1%. When this scale is taken to measure the variation in the smoothed curve from the sunspot maximum 1979 to the minimum in 1986, the result is Delta S approximately equal to - 0.22%. IPCC scientists cannot object to this higher value on the grounds that it is not a common practice to assess the total variation in such a way. They proceed equally by relating the rise in global temperature to the minimum at the end of the 19th century and not to the long-term temperature mean.
According to satellite measurements, the mean value of the solar constant is S = 1367 W/m2. 0.22% of this amount of energy equals 3 W/m2 . This result may also be read from Figure 1. The maximum of the smoothed curve is at 1374.2 W/m2 and the minimum at 1371.2 W/m2 . The variation of 0.22% does not affect climate in its entirety. The solar constant defines the amount of energy which just reaches the outside of the earth’s atmosphere. 30% of this energy is not absorbed by the atmosphere, but reflected. Furthermore, it has to be taken into account that the irradiated sectional area of the earth constitutes only a quarter of the surface to which this thermal energy has to be distributed. So there is only 239 W/m2 available to heat the atmosphere. Consequently, the variation of 3 W/m2 has only a climate effect of 0.53 W/m2 . How this affects global temperature depends on the general circulation model used to assess the climate sensitivity. C. Fröhlich [25] proceeds from a value between 0.3° and 1.4° C / W/m2 . When we choose the mean value 0.85° C / W/m2 to avoid an overestimation, the climate effect of 0.53 W/m2 yields a temperature effect of 0.45° C. The chosen mean value lies within the range given in the literature [19, 31, 33, 82, 87, 89, 115]. Even if a four times longer smoothing interval is chosen as
in Figure 1, the variation of the solar constant reaches 2.2 W/m2 [74] with a temperature effect of 0.33° C.
Variations in global temperature of 0.45° or 0.33° C in the course of seven years cannot be considered negligible. This all the more so as the observed rise of temperature during the last hundred years amounts to merely 0.4° C. From the value 0.5° C, quoted in the literature, 0.1°C has to be subtracted because it is due to urban warming that causes a spurious rise in global temperature [39]. Observed climate data, which follow the rhythm of the 11-year sunspot cycle, indicate that the effect of irradiance variations on the atmosphere is enhanced by positive feed-back processes or stochastic resonance. This form of resonance involves the cooperative interplay of random and periodic stimuli. Noise can improve the response to small periodic or quasiperiodic signals so that the small input is able to entrain large scale fluctuations. This effect is strongest in nonlinear systems with a high level of noise.
23 February 2009
Climate Change in Indonesia
Climate change in Indonesia means millions of fishermen are also facing harsher weather conditions, while dwindling fish stocks affect their income. Indonesia's 40 million poor, including farmers and fishermen, will be the worst affected due to threats including rising sea levels, prolonged droughts and tropical cyclones, the report said.
“As rainfall decreases during critical times of the year this translates into higher drought risk, consequently a decrease in crop yields, economic instability and drastically more undernourished people,” says Fitrian Ardiansyah, Director of WWF-Indonesia’s Climate and Energy Programme. “This will undo Indonesia’s progress against poverty and food insecurity.”
WWF’s review shows that increased rainfall during already wet times of the year may lead to high flood risk, such as the Jakarta flood of February this year that killed more than 65 people and displaced nearly half a million people, with economic losses of US$450 million.
Climate change impacts are noticeable throughout the Asia-Pacific region. More frequent and severe heat waves, floods, extreme weather events and prolonged droughts will continue to lead to increased injury, illness and death. Continued warming temperatures will also increase the number of malaria and dengue fever cases and lead to an increase in other infectious diseases as a result of poor nutrition due to food production disruption.
“The Indonesian government must take its role seriously and lead the way in the fight against global climate change,” says Mubariq Ahmed, Executive Director and CEO of WWF-Indonesia. “Indonesia has to take up the challenge of climate change, putting climate adaption into the development agenda, promoting sustainable land use, as well as demanding support from industrialized nations.”
Indonesia is already a significant emitter of greenhouse gases due to deforestation and land-use change, estimated at 2 million hectares per year and accounts for 85 per cent of the country’s annual greenhouse gas emissions. It is also a serious coal producer and user in the region.
“The government of Indonesia knows how important action against climate change is for their own country and people, and it has put a lot of work into steering the Bali negotiations,” says Hans Verolme, Director of WWF’s Global Climate Change Programme.
No one can escape from climate change in Indonesia. But the effects will be felt more acutely by the poorest people, who are living in the most marginal areas that are vulnerable to drought, for example, or to floods and landslide. Developed countries are responsible for the majority of greenhouse gas emissions which cause global warming, said United Nations Development Programme’s Country Director Hakan Bjorkman. "The poor walk the earth with very light carbon footprint," Bjorkman said, but "they are set to suffer the most from the actions of a few."
Material sourced from: World Wildlife Fund (2007, December 3). Indonesia At Risk: Climate Change Threatens People And Nature. ScienceDaily.
Reuters (2007, November 28) Indonesia Losing Crops, Fish Stocks to Global Warming, Planet Ark.
“As rainfall decreases during critical times of the year this translates into higher drought risk, consequently a decrease in crop yields, economic instability and drastically more undernourished people,” says Fitrian Ardiansyah, Director of WWF-Indonesia’s Climate and Energy Programme. “This will undo Indonesia’s progress against poverty and food insecurity.”
WWF’s review shows that increased rainfall during already wet times of the year may lead to high flood risk, such as the Jakarta flood of February this year that killed more than 65 people and displaced nearly half a million people, with economic losses of US$450 million.
Climate change impacts are noticeable throughout the Asia-Pacific region. More frequent and severe heat waves, floods, extreme weather events and prolonged droughts will continue to lead to increased injury, illness and death. Continued warming temperatures will also increase the number of malaria and dengue fever cases and lead to an increase in other infectious diseases as a result of poor nutrition due to food production disruption.
“The Indonesian government must take its role seriously and lead the way in the fight against global climate change,” says Mubariq Ahmed, Executive Director and CEO of WWF-Indonesia. “Indonesia has to take up the challenge of climate change, putting climate adaption into the development agenda, promoting sustainable land use, as well as demanding support from industrialized nations.”
Indonesia is already a significant emitter of greenhouse gases due to deforestation and land-use change, estimated at 2 million hectares per year and accounts for 85 per cent of the country’s annual greenhouse gas emissions. It is also a serious coal producer and user in the region.
“The government of Indonesia knows how important action against climate change is for their own country and people, and it has put a lot of work into steering the Bali negotiations,” says Hans Verolme, Director of WWF’s Global Climate Change Programme.
No one can escape from climate change in Indonesia. But the effects will be felt more acutely by the poorest people, who are living in the most marginal areas that are vulnerable to drought, for example, or to floods and landslide. Developed countries are responsible for the majority of greenhouse gas emissions which cause global warming, said United Nations Development Programme’s Country Director Hakan Bjorkman. "The poor walk the earth with very light carbon footprint," Bjorkman said, but "they are set to suffer the most from the actions of a few."
Material sourced from: World Wildlife Fund (2007, December 3). Indonesia At Risk: Climate Change Threatens People And Nature. ScienceDaily.
Reuters (2007, November 28) Indonesia Losing Crops, Fish Stocks to Global Warming, Planet Ark.
Earthquake Precursor
The new paper in Science reports that the 1994 earthquake near the equator in the Romanche Transform in the mid-Atlantic ridge-transform system off South America was preceded by a similar episode of slow and smooth energy release that started 100 seconds before the main earthquake. That earthquake had a magnitude of 7.0. Earthquakes of this magnitude can cause major damage if they occur on land.
By exploring the spectral characteristics of the earthquake, or the energy of the seismic waves emitted from it at various frequencies, the scientists discovered that the slow precursor of the Romanche earthquake grew for at least 100 seconds before it triggered a fast, main rupture. The total amount of fault slippage that occurred during the precursor was about 15 percent of the main shock's slippage.
"Due to the low noise levels of the modern global network of seismic stations, this event marks the first time where a slow precursor's energy release can be seen as the first energy arriving at seismometers, providing more convincing evidence for the precursor's existance than in the past," Mr. McGuire said. He added that studying slow precursors may shed light on how big earthquakes get started.
This type of precursor does not occur in California, a highly active earthquake region. One reason may be that the fracture characteristics of continental rocks differ from those of the oceanic crust.
"We hope to learn something fundamental about earthquakes. You need to look at the full complexity of the earthquakes on the planet to understand earthquakes as a whole," Professor Jordan said.
To aid in further study of the precursor phenomenon, he and colleagues have started a global survey that uses very low-frequency waves to study earthquakes of magnitude 6.0 or greater that have occurred since 1995.
Funding for the research came from the National Science Foundation and NASA.
A version of this article appeared in MIT Tech Talk on October 9, 1996
By exploring the spectral characteristics of the earthquake, or the energy of the seismic waves emitted from it at various frequencies, the scientists discovered that the slow precursor of the Romanche earthquake grew for at least 100 seconds before it triggered a fast, main rupture. The total amount of fault slippage that occurred during the precursor was about 15 percent of the main shock's slippage.
"Due to the low noise levels of the modern global network of seismic stations, this event marks the first time where a slow precursor's energy release can be seen as the first energy arriving at seismometers, providing more convincing evidence for the precursor's existance than in the past," Mr. McGuire said. He added that studying slow precursors may shed light on how big earthquakes get started.
This type of precursor does not occur in California, a highly active earthquake region. One reason may be that the fracture characteristics of continental rocks differ from those of the oceanic crust.
"We hope to learn something fundamental about earthquakes. You need to look at the full complexity of the earthquakes on the planet to understand earthquakes as a whole," Professor Jordan said.
To aid in further study of the precursor phenomenon, he and colleagues have started a global survey that uses very low-frequency waves to study earthquakes of magnitude 6.0 or greater that have occurred since 1995.
Funding for the research came from the National Science Foundation and NASA.
A version of this article appeared in MIT Tech Talk on October 9, 1996
22 February 2009
Mekanisme Prekursor Gempa Bumi di Ionosfer (3)
Mekanisme Prekursor Gempa Bumi di Ionosfer
Buldan Muslim
Lapan, Bandung
3.Model Gravitasi-Akustik Atmosfer
Model gravitasi-akustik atmosfer merupakan model paling populer menerangkan bahwa sebelum terjadi gempa bumi gelombang gravitasi-akustik atmosfer dieksitasikan dari daerah persiapan gempa yang menjalar melalui atmosfer mencapai ketinggian ionosfer. Gangguan partikel netral oleh gelombang atmosfer menyebabkan gangguan ionosfer melalui tumbukan antara partikel netral dan terionisasi dari lapisan ionosfer (Mareev dkk., 2002; Gokhberg dan Shamilov, 2004).
Menurut Shamilov dan Gokhberg (1998) berdasarkan model numerik gelombang gravitasi-akustik atmosfer yang dieksitasikan di atmosfer permukaan dapat menjalar sampai ketinggian 120-150 km. Apabila gelombang tersebut menjalar sampai ketinggian lapisan ionosfer pada malam hari ketika gradien vertikal ionosfer bernilai positif maka gelombang tersebut akan memicu terjadinya gelembung plasma yang naik ke atas karena berkembangnya instabilitas Rayleigh-Taylor setelah matahari terbenam. Gelembung plasma yang terjadi di ionosfer yang dipicu oleh gelombang gravitasi-akustik atmosfer dapat naik ke ionosfer bagian atas sampai ketinggian 1000 km. Dengan model ini prekursor gempa bumi pada ketinggian lapisan F ionosfer dan anomali kejadian spread F sebelum gempa bumi dapat diterangkan dengan baik. Dengan demikian prekursor gempa bumi tidak hanya dapat mencapai lapisan F ionosfer tetapi juga dapat mencapai jarak sekitar 1000 km selama proses persiapan gempa (Liperovskaya dkk, 1994). Sehingga mekanisme yang memungkinkan terjadinya pembentukan atau pengrusakan E sporadik hanyalah mekanisme gelombang gravitasi-akustik atmosfer yang memegang peranan kunci.
Gelombang gravitasi-akustik atmosfer dengan periode beberapa menit sampai beberapa jam yang dieksitasikan di daerah aktivitas seismik disebabkan oleh beberapa macam sumber. Penyebab-penyebab tersebut antara lain adalah gerak inti bumi, anomali-anomali termal tak stabil yang disebabkan oleh keluarnya gas-gas rumah kaca, dan keluarnya gas litosfer tidak stabil dari litosfer sampai atmosfer (Gokhberg, 1996). Permukaan bumi dalam osilasi gravitasi-seismik dapat berlaku sebagai penghenti bagi atmosfer. Pada saat tersebut dapat terjadi variasi temperatur, konduktivitas dan tekanan sehingga gelombang gravitasi-akustik atmosfer dapat dieksitasikan. Osilasi gravitasi-seismik juga dapat memicu keluarnya radon dan gas-gas lain ke atmosfer. Hipotesis-hipotesis tersebut perlu dikonfirmasi menggunakan multi sensor pengamatan aktivitas litosfer, atmosfer dan ionosfer secara simultan (Liperovsky, 2007).
Buldan Muslim
Lapan, Bandung
3.Model Gravitasi-Akustik Atmosfer
Model gravitasi-akustik atmosfer merupakan model paling populer menerangkan bahwa sebelum terjadi gempa bumi gelombang gravitasi-akustik atmosfer dieksitasikan dari daerah persiapan gempa yang menjalar melalui atmosfer mencapai ketinggian ionosfer. Gangguan partikel netral oleh gelombang atmosfer menyebabkan gangguan ionosfer melalui tumbukan antara partikel netral dan terionisasi dari lapisan ionosfer (Mareev dkk., 2002; Gokhberg dan Shamilov, 2004).
Menurut Shamilov dan Gokhberg (1998) berdasarkan model numerik gelombang gravitasi-akustik atmosfer yang dieksitasikan di atmosfer permukaan dapat menjalar sampai ketinggian 120-150 km. Apabila gelombang tersebut menjalar sampai ketinggian lapisan ionosfer pada malam hari ketika gradien vertikal ionosfer bernilai positif maka gelombang tersebut akan memicu terjadinya gelembung plasma yang naik ke atas karena berkembangnya instabilitas Rayleigh-Taylor setelah matahari terbenam. Gelembung plasma yang terjadi di ionosfer yang dipicu oleh gelombang gravitasi-akustik atmosfer dapat naik ke ionosfer bagian atas sampai ketinggian 1000 km. Dengan model ini prekursor gempa bumi pada ketinggian lapisan F ionosfer dan anomali kejadian spread F sebelum gempa bumi dapat diterangkan dengan baik. Dengan demikian prekursor gempa bumi tidak hanya dapat mencapai lapisan F ionosfer tetapi juga dapat mencapai jarak sekitar 1000 km selama proses persiapan gempa (Liperovskaya dkk, 1994). Sehingga mekanisme yang memungkinkan terjadinya pembentukan atau pengrusakan E sporadik hanyalah mekanisme gelombang gravitasi-akustik atmosfer yang memegang peranan kunci.
Gelombang gravitasi-akustik atmosfer dengan periode beberapa menit sampai beberapa jam yang dieksitasikan di daerah aktivitas seismik disebabkan oleh beberapa macam sumber. Penyebab-penyebab tersebut antara lain adalah gerak inti bumi, anomali-anomali termal tak stabil yang disebabkan oleh keluarnya gas-gas rumah kaca, dan keluarnya gas litosfer tidak stabil dari litosfer sampai atmosfer (Gokhberg, 1996). Permukaan bumi dalam osilasi gravitasi-seismik dapat berlaku sebagai penghenti bagi atmosfer. Pada saat tersebut dapat terjadi variasi temperatur, konduktivitas dan tekanan sehingga gelombang gravitasi-akustik atmosfer dapat dieksitasikan. Osilasi gravitasi-seismik juga dapat memicu keluarnya radon dan gas-gas lain ke atmosfer. Hipotesis-hipotesis tersebut perlu dikonfirmasi menggunakan multi sensor pengamatan aktivitas litosfer, atmosfer dan ionosfer secara simultan (Liperovsky, 2007).
Mekanisme Prekursor Gempa Bumi di Ionosfer (2)
Mekanisme Prekursor Gempa Bumi di Ionosfer
Buldan Muslim
Lapan, Bandung
2. Model Modifikasi Medan Listrik Atmosfer
Model modifikasi medan listrik atmosfer menduga bahwa sebelum terjadi gempa bumi terjadi peningkatan radioaktivitas dan konduktivitas listrik yang dapat memodifikasi medan listrik atmosfer yang hampir konstan (Pulinets dkk., 1997; Sorokin, 1998; Sorokin dan Chmyrev, 1998). Radioaktivitas di atmosfer terutama disebabkan oleh unsur-unsur radon, radium, torium, actinium, dan hasil-hasil dekomposinya. Hasil-hasil pengamatan menunjukkan adanya peningkatan jumlah materi radioaktivitas beberapa hari sebelum gempa bumi. Sebagai contoh telah terjadi peningkatan konsentrasi radon di udara sebesar 2.5 kali dan 1.5 kali di air satu minggu sebelum gempa bumi di India Utara. Peningkatan tersebut teramati pada jarak 300 km dari episenter gempa bumi (Virk dan Singh, 1994). Hasil pengamatan lain menunjukkan adanya peningkatan konsentrasi radon sebesar 4 kalinya lima hari sebelum gempa bumi. Analisis statistik menunjukkan bahwa dari 300 gempa bumi yang dianalisis terdapat 70 % kasus peningkatan konsentrasi radon sebelum gempa bumi (Heinicke dkk., 1995).
Keluarnya radon dari bumi bersamaan dengan aliran udara yang keluar dari bumi sampai beberapa kilometer. Kecepatan pembentukan ion terkait dengan konsentrasi radioaktivitas. Sehingga jika ada kenaikan konsentrasi radioaktivitas akan ada konsekwensi yaitu terjadinya peningkatan kecepatan pembentukan ion sehingga konduktivitas atmosfer akan naik (Pulinets, 1997).
Konduktivitas listrik atmosfer yang meningkat akan memodifikasi sistem ionosfer-litosfer yang dianggap oleh Imyanitov dan Shifrin (1962) sebagai kapasitor bola. Sehingga medan listrik arah vertikal antara ionosfer dan listosfer akan berubah. Dekat permukaan bumi kuat medan listrik akan berkurang karena bertambahnya konduktivitas listrik, tetapi pada tempat yang lebih tinggi akan bertambah dibandingkan dengan kondisi tidak ada gangguan. Medan listrik dekat batas bawah ionosfer akan meningkat beberapa kali. Konsekwensinya akan terjadi pemanasan Joule dan peningkatan temperatur elektron di daerah E. Sebagai hasilnya akan terjadi gerakan lokal plasma ionosfer dan terjadi ketidakhomogenan ionosfer. Gejala ini dapat dihubungkan dengan adanya variasi medan magnet ULF-ELF. Di samping itu dengan adanya peningkatan temperatur elektron lapisan E, akan terjadi penurunan koefisien rekombinasi sehingga dapat terjadi peningkatan kerapatan elektron ionosfer lokal di daerah E.
Sebagai perkembangan model modifikasi medan listrik atmosfer ini Pulinet dkk., (1998, 2000, 2006) , Pulinets dan Boyarchuk (2004) mengusulkan model quasi-electrostatic untuk menerangkan prekursor gempa bumi. Model ini didasarkan pada pembentukan medan listrik yang disebabkan oleh karena adanya pemisahan ion-ion positif dan negatif sebagai respon gaya gravitasi. Model ini mencoba menerangkan pengamatan medan listrik vertikal dan peningkatan konsentrasi ozon di dekat permukaan bumi selama persiapan gempa. Radon yang diemisikan akan meningkatkan ionisasi di atmosfer dekat bumi. Ion-ion tersebut terperangkap oleh aerosol. Karena sifat mobilitas yang berbeda maka responnya terhadap gaya gravitasi menyebabkan pemisahan muatan sehingga terbentuk lapisan ion-ion positif di bagian bawah dan ion-ion negatif di bagian atas. Dua lapisan setebal sekitar beberapa meter tersebut menimbulkan medan listrik yang arahnya ke bumi yang menyebabkan peningkatan medan listrik stasioner yang telah ada. Medan listrik statik vertikal tersebut dapat menembus sampai ketinggian 1000 km pada kondisi stasioner.
Buldan Muslim
Lapan, Bandung
2. Model Modifikasi Medan Listrik Atmosfer
Model modifikasi medan listrik atmosfer menduga bahwa sebelum terjadi gempa bumi terjadi peningkatan radioaktivitas dan konduktivitas listrik yang dapat memodifikasi medan listrik atmosfer yang hampir konstan (Pulinets dkk., 1997; Sorokin, 1998; Sorokin dan Chmyrev, 1998). Radioaktivitas di atmosfer terutama disebabkan oleh unsur-unsur radon, radium, torium, actinium, dan hasil-hasil dekomposinya. Hasil-hasil pengamatan menunjukkan adanya peningkatan jumlah materi radioaktivitas beberapa hari sebelum gempa bumi. Sebagai contoh telah terjadi peningkatan konsentrasi radon di udara sebesar 2.5 kali dan 1.5 kali di air satu minggu sebelum gempa bumi di India Utara. Peningkatan tersebut teramati pada jarak 300 km dari episenter gempa bumi (Virk dan Singh, 1994). Hasil pengamatan lain menunjukkan adanya peningkatan konsentrasi radon sebesar 4 kalinya lima hari sebelum gempa bumi. Analisis statistik menunjukkan bahwa dari 300 gempa bumi yang dianalisis terdapat 70 % kasus peningkatan konsentrasi radon sebelum gempa bumi (Heinicke dkk., 1995).
Keluarnya radon dari bumi bersamaan dengan aliran udara yang keluar dari bumi sampai beberapa kilometer. Kecepatan pembentukan ion terkait dengan konsentrasi radioaktivitas. Sehingga jika ada kenaikan konsentrasi radioaktivitas akan ada konsekwensi yaitu terjadinya peningkatan kecepatan pembentukan ion sehingga konduktivitas atmosfer akan naik (Pulinets, 1997).
Konduktivitas listrik atmosfer yang meningkat akan memodifikasi sistem ionosfer-litosfer yang dianggap oleh Imyanitov dan Shifrin (1962) sebagai kapasitor bola. Sehingga medan listrik arah vertikal antara ionosfer dan listosfer akan berubah. Dekat permukaan bumi kuat medan listrik akan berkurang karena bertambahnya konduktivitas listrik, tetapi pada tempat yang lebih tinggi akan bertambah dibandingkan dengan kondisi tidak ada gangguan. Medan listrik dekat batas bawah ionosfer akan meningkat beberapa kali. Konsekwensinya akan terjadi pemanasan Joule dan peningkatan temperatur elektron di daerah E. Sebagai hasilnya akan terjadi gerakan lokal plasma ionosfer dan terjadi ketidakhomogenan ionosfer. Gejala ini dapat dihubungkan dengan adanya variasi medan magnet ULF-ELF. Di samping itu dengan adanya peningkatan temperatur elektron lapisan E, akan terjadi penurunan koefisien rekombinasi sehingga dapat terjadi peningkatan kerapatan elektron ionosfer lokal di daerah E.
Sebagai perkembangan model modifikasi medan listrik atmosfer ini Pulinet dkk., (1998, 2000, 2006) , Pulinets dan Boyarchuk (2004) mengusulkan model quasi-electrostatic untuk menerangkan prekursor gempa bumi. Model ini didasarkan pada pembentukan medan listrik yang disebabkan oleh karena adanya pemisahan ion-ion positif dan negatif sebagai respon gaya gravitasi. Model ini mencoba menerangkan pengamatan medan listrik vertikal dan peningkatan konsentrasi ozon di dekat permukaan bumi selama persiapan gempa. Radon yang diemisikan akan meningkatkan ionisasi di atmosfer dekat bumi. Ion-ion tersebut terperangkap oleh aerosol. Karena sifat mobilitas yang berbeda maka responnya terhadap gaya gravitasi menyebabkan pemisahan muatan sehingga terbentuk lapisan ion-ion positif di bagian bawah dan ion-ion negatif di bagian atas. Dua lapisan setebal sekitar beberapa meter tersebut menimbulkan medan listrik yang arahnya ke bumi yang menyebabkan peningkatan medan listrik stasioner yang telah ada. Medan listrik statik vertikal tersebut dapat menembus sampai ketinggian 1000 km pada kondisi stasioner.
Mekanisme Prekursor Gempa Bumi di Ionosfer (1)
Mekanisme Prekursor Gempa Bumi di Ionosfer
Buldan Muslim
Lapan, Bandung
Sampai saat ini model-model yang digunakan untuk menerangkan mekanisme prekursor gempa bumi dapat dikelompokkan dalam 3 model yaitu model emisi gelombang elektromagnetik, model modifikasi medan listrik atmosfer dan model gravitasi-akustik.
1. Model Emisi Gelombang Elektromagnetik
Dalam kelompok model emisi gelombang elektromagnetik Gokhberg dkk. (1985) mengusulkan model resonator. Model resonator mengatakan bahwa sebelum gempa bumi telah terjadi proses pemisahan muatan jangka pendek (sekitar 1/1000 detik) di permukaan bumi. Proses tersebut menyebabkan arus dan muatan di ionosfer yang diikuti dengan proses osilasi di dalam sistem litosfer-ionosfer analogi dengan sistem arus biasa dengan kapasitor, induktor dan resistor. Tetapi sampai sekerang model resonator ini belum ada pembuktiannya secara eksperimen. Kalaupun proses ini ada tetapi tidak secara nyata memainkan peranan penting dalam kopling litosfer-ionosfer (Liperovsky, 2007).
Mulchanov (1991) mengusulkan bahwa selama pergeseran dan kerusakan blok inti bumi sepanjang bagian aktif di dekat daerah persiapan gempa, telah terjadi emisi gelombang elektromagnetik pada spektrum frekuensi yang lebar. Guglielme dan Pokhotelov (1996) dan Sgrinya dkk., (2004) mempertimbangkan bahwa emisi elektromagnetik terjadi karena adanya osilasi elastik di inti bumi. Ada dua macam mekanisme emisi yaitu emisi induktif dan emisi elektrokinetika. Yang pertama didasarkan pada adanya arus Fuko selama gerak inti bumi dalam medan magnet, sedangkan mekanisme kedua berdasarkan gerak fluida melalui pori-pori dan bagian-bagian material bebatuan. Gelombang yang diemisikan menjalar melalui mantel dan permukaan bumi, atmosfer dan ionosfer. Ketika melalui plasma dekat bumi spektrumnya dapat berubah. Gelombang yang diemisikan menyebabkan gelombang Alven dengan frekuensi 0.3 – 10 Hz di plasma ionosfer dan magnetosfer. Hipotesis emisi gelombang ini digunakan untuk menerangkan anomali emisi VLF di ionosfer di atas daerah seismik aktif yang didapatkan dari satelit (Liperovsky, 2007).
Kolokolov dkk., (1992) menduga bahwa telah terjadi deretan pulsa elektromagnetik untuk menerangkan adanya pengamatan anomali medan litrik atmosfer dan medan magnet yang berulang-ulang sebelum gempa bumi . Tetapi tidak semua pengamatan dapat diterangkan dengan hipotesa ini seperti kejadian E sporadik yang lebih tebal dan proses pemanasan yang lebih intensif (Liperovsky, 2007).
Buldan Muslim
Lapan, Bandung
Sampai saat ini model-model yang digunakan untuk menerangkan mekanisme prekursor gempa bumi dapat dikelompokkan dalam 3 model yaitu model emisi gelombang elektromagnetik, model modifikasi medan listrik atmosfer dan model gravitasi-akustik.
1. Model Emisi Gelombang Elektromagnetik
Dalam kelompok model emisi gelombang elektromagnetik Gokhberg dkk. (1985) mengusulkan model resonator. Model resonator mengatakan bahwa sebelum gempa bumi telah terjadi proses pemisahan muatan jangka pendek (sekitar 1/1000 detik) di permukaan bumi. Proses tersebut menyebabkan arus dan muatan di ionosfer yang diikuti dengan proses osilasi di dalam sistem litosfer-ionosfer analogi dengan sistem arus biasa dengan kapasitor, induktor dan resistor. Tetapi sampai sekerang model resonator ini belum ada pembuktiannya secara eksperimen. Kalaupun proses ini ada tetapi tidak secara nyata memainkan peranan penting dalam kopling litosfer-ionosfer (Liperovsky, 2007).
Mulchanov (1991) mengusulkan bahwa selama pergeseran dan kerusakan blok inti bumi sepanjang bagian aktif di dekat daerah persiapan gempa, telah terjadi emisi gelombang elektromagnetik pada spektrum frekuensi yang lebar. Guglielme dan Pokhotelov (1996) dan Sgrinya dkk., (2004) mempertimbangkan bahwa emisi elektromagnetik terjadi karena adanya osilasi elastik di inti bumi. Ada dua macam mekanisme emisi yaitu emisi induktif dan emisi elektrokinetika. Yang pertama didasarkan pada adanya arus Fuko selama gerak inti bumi dalam medan magnet, sedangkan mekanisme kedua berdasarkan gerak fluida melalui pori-pori dan bagian-bagian material bebatuan. Gelombang yang diemisikan menjalar melalui mantel dan permukaan bumi, atmosfer dan ionosfer. Ketika melalui plasma dekat bumi spektrumnya dapat berubah. Gelombang yang diemisikan menyebabkan gelombang Alven dengan frekuensi 0.3 – 10 Hz di plasma ionosfer dan magnetosfer. Hipotesis emisi gelombang ini digunakan untuk menerangkan anomali emisi VLF di ionosfer di atas daerah seismik aktif yang didapatkan dari satelit (Liperovsky, 2007).
Kolokolov dkk., (1992) menduga bahwa telah terjadi deretan pulsa elektromagnetik untuk menerangkan adanya pengamatan anomali medan litrik atmosfer dan medan magnet yang berulang-ulang sebelum gempa bumi . Tetapi tidak semua pengamatan dapat diterangkan dengan hipotesa ini seperti kejadian E sporadik yang lebih tebal dan proses pemanasan yang lebih intensif (Liperovsky, 2007).
20 February 2009
LOW LATITUDE IONOSPHERIC MODELING
LOW LATITUDE IONOSPHERIC MODELING
OVER INDONESIA FROM GPS DATA
By
Buldan Muslim
NIM : 35104002
Promotor : Prof. Dr. Ir. Hasanuddin Zaenal Abidin MSc.
Co-Promotor : Prof. The Houw Liong Ph.D.
Co-Promotor : Dr. Ir. Wedyanto Kuntjoro MSc.
Ionosphere affects electromagnetic waves used in GPS system. Total time transmission of GPS signal propagation through ionosphere from satellite to receiver consist ionospheric delay time of transmission. The ionospheric delay depend to the ionospheric total electron content (TEC) and GPS signal frequency.
From dual frequency GPS receiver data can be derivied the ionospheric TEC value by using combination of GPS code and phase, then the TEC data can be used for developing low latitude ionospheric model and method of earthquake precursors revealing.
The ionospheric models are including daily and monthly ionospheric model. The daily local ionosphric model is developed from single GPS station. The daily regional ionospheric model is developed from several GPS station in Indonesian sector. The monthly ionospheric model have been developed from GPS data in Indonesian sector. The monthly ionospheric model assume that at same local time and latitude the TEC value have no dependent to longitude change in Indonesian sector. Local time variation of TEC is estimated by using Fourier series, latitudinal variation of model is expressed by using polynomial function and ionospheric response to solar activity is assumed linear.
The monthly ionospheric model can be used for daily ionospheric prediction by daily updating of the model by using daily data of TEC derived from GPS data. Daily updating of the monthly model is examined during geomagnetic storm and ionospheric precursors of large earthquake and resulting the TEC prediction more accurate rather than monthly ionospheric model. The daily update of monthly ionospheric model give contribution for increasing accuration of ionospheric model by using daily ionospheric index.
The daily ionospheric index is also can be used for ionospheric anomaly detection related to earthquake precursors or geomagnetic storms. Several earthquake precursors in ionospheric parameter at low latitude can be revealed by using S index and ionospheric tidal activity index. Mechanism of ionospheric precursor caused by gravity anomaly before earthquake is a alternative hypothesis and required clarification by using local earth gravity.
Key words: GPS, ionosphere, low latitude, Indonesia sector, model, ionospheric index, anomaly, earthquake precursor.
OVER INDONESIA FROM GPS DATA
By
Buldan Muslim
NIM : 35104002
Promotor : Prof. Dr. Ir. Hasanuddin Zaenal Abidin MSc.
Co-Promotor : Prof. The Houw Liong Ph.D.
Co-Promotor : Dr. Ir. Wedyanto Kuntjoro MSc.
Ionosphere affects electromagnetic waves used in GPS system. Total time transmission of GPS signal propagation through ionosphere from satellite to receiver consist ionospheric delay time of transmission. The ionospheric delay depend to the ionospheric total electron content (TEC) and GPS signal frequency.
From dual frequency GPS receiver data can be derivied the ionospheric TEC value by using combination of GPS code and phase, then the TEC data can be used for developing low latitude ionospheric model and method of earthquake precursors revealing.
The ionospheric models are including daily and monthly ionospheric model. The daily local ionosphric model is developed from single GPS station. The daily regional ionospheric model is developed from several GPS station in Indonesian sector. The monthly ionospheric model have been developed from GPS data in Indonesian sector. The monthly ionospheric model assume that at same local time and latitude the TEC value have no dependent to longitude change in Indonesian sector. Local time variation of TEC is estimated by using Fourier series, latitudinal variation of model is expressed by using polynomial function and ionospheric response to solar activity is assumed linear.
The monthly ionospheric model can be used for daily ionospheric prediction by daily updating of the model by using daily data of TEC derived from GPS data. Daily updating of the monthly model is examined during geomagnetic storm and ionospheric precursors of large earthquake and resulting the TEC prediction more accurate rather than monthly ionospheric model. The daily update of monthly ionospheric model give contribution for increasing accuration of ionospheric model by using daily ionospheric index.
The daily ionospheric index is also can be used for ionospheric anomaly detection related to earthquake precursors or geomagnetic storms. Several earthquake precursors in ionospheric parameter at low latitude can be revealed by using S index and ionospheric tidal activity index. Mechanism of ionospheric precursor caused by gravity anomaly before earthquake is a alternative hypothesis and required clarification by using local earth gravity.
Key words: GPS, ionosphere, low latitude, Indonesia sector, model, ionospheric index, anomaly, earthquake precursor.
Appearance of solar activity signals in Indian Ocean
Appearance of solar activity signals in Indian Ocean
Dipole (IOD) phenomena and monsoon climate
pattern over Indonesia
Jalu Tejo Nugroho¤
National Institute of Aeronautics and Space (LAPAN), Indonesia
Abstract. From previous studies, it is known that interaction between ocean - atmosphere causes climate variability in the tropical Indian Ocean region as well
as in Indonesia. It has also been proposed that solar activity affects Earth's
climate globally and regionally. In this study, we report association between
Indian Ocean Dipole (IOD) phenomena and cloud cover over western Indonesia.
The statistical correlation coeficient(r) is found to be 0.64, for the period April
1976 to January 1996. By using wavelet analysis, we also find that solar signal
appears strongly on IOD during December-February.
Keywords : wavelet analysis, Solar activity, IOD
Dipole (IOD) phenomena and monsoon climate
pattern over Indonesia
Jalu Tejo Nugroho¤
National Institute of Aeronautics and Space (LAPAN), Indonesia
Abstract. From previous studies, it is known that interaction between ocean - atmosphere causes climate variability in the tropical Indian Ocean region as well
as in Indonesia. It has also been proposed that solar activity affects Earth's
climate globally and regionally. In this study, we report association between
Indian Ocean Dipole (IOD) phenomena and cloud cover over western Indonesia.
The statistical correlation coeficient(r) is found to be 0.64, for the period April
1976 to January 1996. By using wavelet analysis, we also find that solar signal
appears strongly on IOD during December-February.
Keywords : wavelet analysis, Solar activity, IOD
How are solar variations represented in the climate models?
How are solar variations represented in the models?
This varies a lot because of uncertainties in the past record and complexities in the responses. But given a particular estimate of solar activity there are a number of modelled responses. First, the total amount of solar radiation (TSI) can be varied - this changes the total amount of energy coming into the system and is very easy to implement. Second, the variation over the the solar cycle at different frequencies (from the UV to the near infra-red) don't all vary with the same amplitude - UV changes are about 10 times as large as those in the total irradiance. Since UV is mostly absorbed by ozone in the stratosphere, including these changes increases the magnitude of the solar cycle variability in the stratosphere. Furthermore, the change in UV has an impact on the production of ozone itself (even down into the troposphere). This can be calculated with chemistry-climate models, and is increasingly being used in climate model scenarios (see here for instance).
There are also other hypothesised impacts of solar activity on climate, most notably the impact of galactic cosmic rays (which are modulated by the solar magnetic activity on solar cycle timescales) on atmospheric ionisation, which in turn has been linked to aerosol formation, and in turn linked to cloud amounts. Most of these links are based on untested theories and somewhat dubious correlations, however, as was recognised many years ago (Dickinson, 1975), this is a plausible idea. Implementing it in climate models is however a challenge. It requires models to have a full model of aerosol creation, growth, accretion and cloud nucleation. There are many other processes that affect aerosols and GCR-related ionisation is only a small part of that. Additionally there is a huge amount of uncertainty in aerosol-cloud effects (the 'aerosol indirect effect'). Preliminary work seems to indicate that the GCR-aerosol-cloud link is very small (i.e. the other effects dominate), but this is still in the early stages of research. Should this prove to be significant, climate models will likely incorporate this directly (using embedded aerosol codes), or will parameterise the effects based on calculated cloud variations from more detailed models. What models can't do (except perhaps as a sensitivity study) is take purported global scale correlations and just 'stick them in' - cloud processes and effects are so tightly wound up in the model dynamics and radiation and have so much spatial and temporal structure that this couldn't be done in a way that made physical sense. For instance, part of the observed correlation could be due to the other solar effects, and so how could they be separated out? (and that's even assuming that the correlations actually hold up over time, which doesn't seem to be the case).
http://www.realclimate.org/index.php/archives/2009/01/faq-on-climate-models-part-ii/#more-619
19 February 2009
Cuaca Antariksa
Lapan, Bandung
Cuaca antariksa menggambarkan kondisi di antariksa yang meliputi kondisi pada matahari, angin surya, magnetosfer, ionosfer, dan termosfer. Cuaca antariksa sangat dipengaruhi oleh aktivitas matahari terutama kecepatan dan kerapatan angin surya, sifat dari medan magnetik bumi serta medan magnetik antarplanet Interplanetary Magnetic Field (IMF) yang dibawa oleh plasma angin surya, dan lokasi kita dalam tata surya. Berbagai Aktivitas matahari seperti sunspot, flare, prominensa, filamen, Coronal Mass Ejection (CME) dan kaitannya dengan gelombang kejut (shock wave) juga penting dalam mempengaruhi cuaca antariksa yang dapat menekan magnetosfer dan memicu terjadinya badai geomagnetik.
Cuaca antariksa mempengaruhi kinerja dan keandalan sistem teknologi yang berada di antariksa dan landas bumi. Variasi fenomena fisis yang terkait dengan cuaca antariksa seperti badai geomagnetik (geomagnetic storms) dan substorms, memberikan energi pada sabuk Van Allen hingga dapat menimbulkan aurora, arus induksi geomagnetik (geomagnetically induced current) di permukaan bumi, serta perubahan kondisi ionosfer yang dapat menyebabkan gangguan komunikasi dan navigasi.
http://www.dirgantara-lapan.or.id/matsa/index-matsa.htm
2012: No Killer Solar Flare
2012: No Killer Solar Flare
Written by Ian O'Neill
Could a solar flare destroy the Earth in 2012?
We could be in for a huge firework display in 2012. The Sun will be approaching the peak of its 11-year cycle, called "solar maximum", so we can expect a lot of solar activity. Some predictions put the solar maximum of Solar Cycle 24 even more energetic than the last solar maximum in 2002-2003 (remember all those record breaking X-class flares?). Solar physicists are already getting excited about this next cycle and new prediction methods are being put to good use. But should we be worried?
Related 2012 articles:
* 2012: No Geomagnetic Reversal (posted October 3rd 2008)
* 2012: No Killer Solar Flare (posted June 21st 2008)
* 2012: Planet X Is Not Nibiru (posted June 19th 2008)
* 2012: No Planet X (posted May 25th 2008)
* No Doomsday in 2012 (posted May 19th 2008)
The Positions of Jupiter and Saturn in 2012 Influence the Impact of CME
by Dan Eden for ViewZone
But nature is never perfect. The Sun rotates at a slight angle (7.25 degrees), much as our Earth does. As it wobbles, it tilts the sleeves, causing them to clash with eachother and eventually disrupt the surface. Havine the barycenters of the to most massive planets, Jupiter and Saturn, in maximum misalignment is especially disruptive. This disturbance, to put it simply, works its way to the surface and erupts in sun spots and solar flares or CME's (Coronal Mass Ejections).
The last solar cycle was at its maximum in 2001. Each active solar cycle has a period when the flares are strongest, usually happening near the solar equator, called the "solar maximum." This is significant because the next "solar maximum" event will coincide with December 21, 2012.
http://www.viewzone.com/endtime.html
Predictability of Climate Models
Climateprediction.net
27,000 runs have successfully completed and returned results to climateprediction.net!
The global mean temperatures produced by all of these through the 3 phases have been plotted in the figure below.
Phase 1
Most models maintain a temperature of between 13 and 14 °C
Phase 2
Most models still maintain a temperature of between 13 and 14 °C, however some get colder - these are not stable and the heat flux calculated in phase 1 was not correct to keep the model in balance.
Phase 3
In this phase the models all react very differently to the doubling of carbon dioxide! Most models warm slowly to between 13 and 15 °C over the 15 years. However some get a lot warmer - up to 22°C, whilst others cool.
Comment :
It shows that the accuracies of long range predictions are poor.
(HouwLiong)
Global Warming And The Next Ice Age
Meeting Summary “Global Warming And The Next Ice Age” By Dubey Et Al 2008
Filed under: Climate Science Meetings — Roger Pielke Sr. @ 7:00 am
Climate Science has weblogged about a meeting Global Warming and the Next Ice Age that was held in Santa Fe, New Mexico July 17-21 2006.
The AMS Bulletin of the American Meterological Society has published a summary of this meeting in its December 2008 issue;
Manvendra K. Dubey, Charlie S. Zender, Chris K. Folland, and Petr Chylek, 2008: Global Warming and the Next Ice Age. Bulletin of the American Meteorological Society, pp. 1905–1909. DOI: 10.1175/2008BAMS2359.1.
The goal of the meeting was that
“More than 120 scientists from 14 countries with expertise in the observation, theory, and
modeling of climate change met to discuss how Earth’s climate responds to non–greenhouse gas forcings, and how to improve predictions of these responses.”
The BAMS meeting summary starts with the text
“Earth’s climate is a complex dynamical system that is responding to an array of forcings, which include anthropogenic carbon dioxide and aerosols and solar variability. Aeorsol and solar forcings are imperfectly constrained and only monitored by observational systems with limited sensitivity and coverage.”
Among the conclusions of the meeting, as written at the end of the BAMS article is that
“It was determined during this conference that the optimal path to reduce uncertainties and increase precision of climate change forecasts is by bringing in observations to inform, test, and refine climate models. This is particularly important for aerosols and clouds, which are complex and influence the planetary albedo and radiation budget significantly. Progress is being made and the outlook it good since many aerosol-cloud perturbations and processes operate on shorter time scales rendering them measurable. However, this is a daunting task for other longer-term feedbacks such as ocean–ice–atmosphere changes where our community will have to use paleoclimate data or gather longer records to validate climate models, an interaction that our meeting also catalyzed. Observationalists and modelers (Xiao and Li 2007) must play a synergistic role in climate change research to increase the precision of climate forecasts for future energy options.”
Filed under: Climate Science Meetings — Roger Pielke Sr. @ 7:00 am
Climate Science has weblogged about a meeting Global Warming and the Next Ice Age that was held in Santa Fe, New Mexico July 17-21 2006.
The AMS Bulletin of the American Meterological Society has published a summary of this meeting in its December 2008 issue;
Manvendra K. Dubey, Charlie S. Zender, Chris K. Folland, and Petr Chylek, 2008: Global Warming and the Next Ice Age. Bulletin of the American Meteorological Society, pp. 1905–1909. DOI: 10.1175/2008BAMS2359.1.
The goal of the meeting was that
“More than 120 scientists from 14 countries with expertise in the observation, theory, and
modeling of climate change met to discuss how Earth’s climate responds to non–greenhouse gas forcings, and how to improve predictions of these responses.”
The BAMS meeting summary starts with the text
“Earth’s climate is a complex dynamical system that is responding to an array of forcings, which include anthropogenic carbon dioxide and aerosols and solar variability. Aeorsol and solar forcings are imperfectly constrained and only monitored by observational systems with limited sensitivity and coverage.”
Among the conclusions of the meeting, as written at the end of the BAMS article is that
“It was determined during this conference that the optimal path to reduce uncertainties and increase precision of climate change forecasts is by bringing in observations to inform, test, and refine climate models. This is particularly important for aerosols and clouds, which are complex and influence the planetary albedo and radiation budget significantly. Progress is being made and the outlook it good since many aerosol-cloud perturbations and processes operate on shorter time scales rendering them measurable. However, this is a daunting task for other longer-term feedbacks such as ocean–ice–atmosphere changes where our community will have to use paleoclimate data or gather longer records to validate climate models, an interaction that our meeting also catalyzed. Observationalists and modelers (Xiao and Li 2007) must play a synergistic role in climate change research to increase the precision of climate forecasts for future energy options.”
18 February 2009
Rain pattern reassuring, but flood risk remains
Rain pattern reassuring, but flood risk remains
The Jakarta Post , Jakarta | Thu, 01/18/2007 3:21 PM | Jakarta
Adianto P. Simamora, The Jakarta Post, Jakarta
Scientists have predicted the city will see a rainy conclusion to January.
But while rainfall is expected to be within the normal range, floods are still inevitable because the soil has lost its ability to absorb water.
The forecast was made by a join team comprising experts from the Bandung Institute of Technology (ITB) and the Agency for the Assessment and Application of Technology (BPPT).
Team member The Houw Liong of the ITB's School of Physics said rainfall rates would average 15 millimeters an hour, similar to rates in the wet season of 2005.
""We are particularly worried about the ability of the soil to absorb runoff water. If the rain continues for more than two hours, a number of areas will flood. But the floods won't be as serious as those of 2002,"" he said.
Thirty-one people died in the 2002 floods and 300,000 residents were forced to evacuate their homes.
The team applies the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to calculate weather risks, using data from the last 40 years, including on river levels and rainfall rates.
For Jakarta's weather, the team uses data from the city's three largest rivers: the Ciliwung, the Pasanggrahan and the Sunter.
Liong said the model was also applied in countries like Japan and the United States.
Flooding has become an annual occurrence in the city, with 40 percent of Jakarta at or below sea level and an outdated, ineffective drainage system.
The Jakarta administration has identified 78 flood-prone areas in the city.
The Meteorology and Geophysics Agency (BMG) earlier predicted higher rainfall rates in early January.
The prediction was then revised due to last week's record-high temperatures.
The agency then warned that a drought could hit the city this year.
Asep Karsis of the BPPT said the floods in Jakarta might start in the upland areas of Puncak, Bogor and Depok.
""We can't guarantee that Jakarta will be free from floods this year if garbage continues to clog its waterways.""
Thirteen rivers run through the city.
The Jakarta administration has allocated Rp 500 billion for the provision of food, shelter and medicines for flood victims.
It has also spent hundreds of billions of rupiah on upgrading the city's drainage system, dredging rivers and completing the construction of the East Flood Canal.
However, experts have said the construction of flood canals is only a temporary solution.
""Flood canals channel rainfall and water runoff into the sea. Jakarta will then face water shortages in the dry season,"" Liong said.
The construction of the 23.5-kilometer East Flood Canal is expected to reduce the flood risk in East and North Jakarta.
The canal will accommodate water from the Cipinang, Sunter, Buaran, Jati Kramat and Cakung rivers.
The central government is also involved in flood prevention and control methods this year.
The Public Works Ministry recently installed an early warning system that provides realtime water level information for the Cisadane and Ciliwung rivers.
Commentary :
This writing was based on the interview in January 18, 2007 before the severe floods.
For 2009, the peak of rainfall in Jabodetabek (Jakarta, Bogor, Depok ,Tanggerang and Bekasi) acoording to ANFIS will be in February.
(HouwLiong)
The Jakarta Post , Jakarta | Thu, 01/18/2007 3:21 PM | Jakarta
Adianto P. Simamora, The Jakarta Post, Jakarta
Scientists have predicted the city will see a rainy conclusion to January.
But while rainfall is expected to be within the normal range, floods are still inevitable because the soil has lost its ability to absorb water.
The forecast was made by a join team comprising experts from the Bandung Institute of Technology (ITB) and the Agency for the Assessment and Application of Technology (BPPT).
Team member The Houw Liong of the ITB's School of Physics said rainfall rates would average 15 millimeters an hour, similar to rates in the wet season of 2005.
""We are particularly worried about the ability of the soil to absorb runoff water. If the rain continues for more than two hours, a number of areas will flood. But the floods won't be as serious as those of 2002,"" he said.
Thirty-one people died in the 2002 floods and 300,000 residents were forced to evacuate their homes.
The team applies the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to calculate weather risks, using data from the last 40 years, including on river levels and rainfall rates.
For Jakarta's weather, the team uses data from the city's three largest rivers: the Ciliwung, the Pasanggrahan and the Sunter.
Liong said the model was also applied in countries like Japan and the United States.
Flooding has become an annual occurrence in the city, with 40 percent of Jakarta at or below sea level and an outdated, ineffective drainage system.
The Jakarta administration has identified 78 flood-prone areas in the city.
The Meteorology and Geophysics Agency (BMG) earlier predicted higher rainfall rates in early January.
The prediction was then revised due to last week's record-high temperatures.
The agency then warned that a drought could hit the city this year.
Asep Karsis of the BPPT said the floods in Jakarta might start in the upland areas of Puncak, Bogor and Depok.
""We can't guarantee that Jakarta will be free from floods this year if garbage continues to clog its waterways.""
Thirteen rivers run through the city.
The Jakarta administration has allocated Rp 500 billion for the provision of food, shelter and medicines for flood victims.
It has also spent hundreds of billions of rupiah on upgrading the city's drainage system, dredging rivers and completing the construction of the East Flood Canal.
However, experts have said the construction of flood canals is only a temporary solution.
""Flood canals channel rainfall and water runoff into the sea. Jakarta will then face water shortages in the dry season,"" Liong said.
The construction of the 23.5-kilometer East Flood Canal is expected to reduce the flood risk in East and North Jakarta.
The canal will accommodate water from the Cipinang, Sunter, Buaran, Jati Kramat and Cakung rivers.
The central government is also involved in flood prevention and control methods this year.
The Public Works Ministry recently installed an early warning system that provides realtime water level information for the Cisadane and Ciliwung rivers.
Commentary :
This writing was based on the interview in January 18, 2007 before the severe floods.
For 2009, the peak of rainfall in Jabodetabek (Jakarta, Bogor, Depok ,Tanggerang and Bekasi) acoording to ANFIS will be in February.
(HouwLiong)
Coronal Mass Ejections
A coronal mass ejection and prominence eruption observed in white light from the SMM (Solar Maximum Mission) spacecraft. The time of each panel increases from left to right. The dashed inner circle in each panel is the solar radius, the occulting radius is at 1.6 solar radii.
Click on image for full size (125K JPEG)
Image courtesy of the High Altitude Observatory
"Without warning, the relatively calm solar atmosphere can be torn asunder by sudden outbursts of a scale unknown on Earth. Catastrophic events of incredible energy...stretch up to halfway across the visible solar surface, suddenly and unpredictably open up and expel their contents, defying the Sun's enormous gravity." (Sun, Earth, and Sky by Kenneth R. Lang)
These catastrophic events that the author is speaking about are coronal mass ejections (CME's).
Coronal mass ejections are explosions in the Sun's corona that spew out solar particles. The CME's typically disrupt helmet streamers in the solar corona. As much as 1x10^13 (10,000,000,000,000) kilograms of material can be ejected into the solar wind. Coronal mass ejections propagate out in the solar wind, where they may encounter the Earth and influence geomagnetic activity.
CME's are believed to be driven by energy release from the solar magnetic field. How this energy release occurs, and the relationship between different types of solar activity, is one of the many puzzles facing solar physicists today.
CME's can seriously disrupt the Earth's environment. Intense radiation from the Sun, which arrives only 8 minutes after being released, can alter the Earth's outer atmosphere, disrupting long-distance radio communications and deteriorating satellite orbits. Very energetic particles pushed along by the shock wave of the CME can endanger astronauts or fry satellite electronics. These energetic particles arrive at the Earth (or Moon) about an hour later. The actual coronal mass ejection arrives at the Earth one to four days after the initial eruption, resulting in strong geomagnetic storms, aurorae and electrical power blackouts. All of these solar-terrestrial interactions are forecasted and monitored by the those who work in the space weather area.
Coronal mass ejections will become more and more frequent as we near solar maximum. CME's, not discovered until the 1970's, are difficult to detect. That is why we need satellites such as the ACE satellite which acts as a spaceweather station while in orbit. ACE can provide a one-hour advance warning of any geomagnetic storms that would affect the Earth.
"Thus, the Sun's sudden and unexpected outbursts remain as unpredictable as most human passions. They just keep on happening, and even seem to be necessary to purge the Sun of pent-up frustration and to relieve it of twisted, contorted magnetism." (Kenneth R. Lang, Sun, Earth and Sky)
Pager Satellite Failure and Space Environment
Pager Satellite Failure May Have Been Related to Disturbed Space Environment
A period of particularly bad "space weather" may have played a part in failure of the Galaxy 4 satellite, which silenced about 80% of the United States' pagers last May.
by D. N. Baker, J. H. Allen, S. G. Kanekal, and G. D. Reeves
A very intense flux of electrons, evident in the magnetosphere earlier this year, may have caused a satellite failure (or at least exacerbated the situation) leading to the loss of telephone pager service to 45 million customers, research has shown. The electrons, known as highly relativistic electrons (HREs), were especially numerous in the weeks preceding the failure. Researchers say HREs have triggered spacecraft anomalies in the past when fluxes are elevated. They therefore believe this energetic electron event could have been behind the failure of the attitude control system of the Galaxy 4 spacecraft at 2200 UT on May 19, 1998. A backup system also failed, either at the same time or earlier, so operators were unable to maintain a stable Earth link.
Galaxy 4 is a heavily used communication satellite at geostationary orbit*. Its sudden failure caused not only widespread loss of pager service but also numerous other communication outages. Using a wide array of datasets, our team of scientists analyzed the space environment for the times in question and found evidence of highly disturbed solar, solar wind*, and geomagnetic conditions in late April and early May. The combination of coronal mass ejections*, solar flares*, and high speed solar wind streams led to a powerful sequence of interplanetary disturbances that hit the Earth. These disturbances produced a deep, powerful, and long-lasting enhancement of the HRE population throughout the outer Van Allen radiation zone. The kinds of disturbances witnessed are indicative of the types of events that may commonly occur during the approaching peak in solar activity in the years 2000 and 2001. It will be most important to determine how well space systems can stand up to the multifaceted effects of the space environment over the next several years.
The evidence is strong that HRE fluxes were substantially elevated above average conditions for a period of about 2 weeks before the Galaxy 4 failure. Long-duration HRE enhancements have in the past been convincingly associated with spacecraft operational failure. For example, we know that high fluxes of energetic electrons can lead to a buildup of electric charge deep inside of spacecraft subsystems. In this process, energetic electrons bury themselves in poorly conducting material such as thermal control blankets, electronic boards, coaxial cables, and insulation. Eventually, if the charge builds up more rapidly (because of electrons continuing to hit the spacecraft) than it leaks away (because of low material conductivity), then there can be an electrostatic discharge event. This is much like small, powerful lightning discharge inside of the spacecraft. Such a discharge can damage or destroy a sensitive circuit or subsystem, and the result can be a spacecraft failure.
Scientists involved in the analysis have noted that whether or not the incident on May 19 was caused by "space weather," it nonetheless shows the vulnerability of society to a single spacecraft failure. The vast number of users affected by the loss of just one spacecraft shows how dependent society is on space technology and how fragile communication systems can be. The Galaxy 4 failure had a large impact because the spacecraft was optimally located over the central United States and could best handle digital pager signals. Eighty percent of all pager traffic was being directed through it. Increasingly, phones, televisions, radios, bank transactions, newspapers, credit card systems, and the like depend on satellites for at least part of their links. It seems very inadvisable to have such complex, societally significant systems susceptible to single-spacecraft failures. This seems particularly true as the peak of the 11-year solar activity cycle, in 2000-2001, approaches.
The typical major communication spacecraft has an estimated value of $200-250 million. Over 100 such spacecraft are in operation today and whole new groups of low- to mid-altitude satellites are being placed in orbit. The invested cost of space assets is staggering. Given the recent record of space environmental disturbances, space researchers believe many more highly disruptive spacecraft failures may occur. They suggest that space systems be made immune to the space environment and backup systems be made readily available to cover space system failure whatever the cause.
http://www.agu.org/sci_soc/articles/eisbaker.html
A period of particularly bad "space weather" may have played a part in failure of the Galaxy 4 satellite, which silenced about 80% of the United States' pagers last May.
by D. N. Baker, J. H. Allen, S. G. Kanekal, and G. D. Reeves
A very intense flux of electrons, evident in the magnetosphere earlier this year, may have caused a satellite failure (or at least exacerbated the situation) leading to the loss of telephone pager service to 45 million customers, research has shown. The electrons, known as highly relativistic electrons (HREs), were especially numerous in the weeks preceding the failure. Researchers say HREs have triggered spacecraft anomalies in the past when fluxes are elevated. They therefore believe this energetic electron event could have been behind the failure of the attitude control system of the Galaxy 4 spacecraft at 2200 UT on May 19, 1998. A backup system also failed, either at the same time or earlier, so operators were unable to maintain a stable Earth link.
Galaxy 4 is a heavily used communication satellite at geostationary orbit*. Its sudden failure caused not only widespread loss of pager service but also numerous other communication outages. Using a wide array of datasets, our team of scientists analyzed the space environment for the times in question and found evidence of highly disturbed solar, solar wind*, and geomagnetic conditions in late April and early May. The combination of coronal mass ejections*, solar flares*, and high speed solar wind streams led to a powerful sequence of interplanetary disturbances that hit the Earth. These disturbances produced a deep, powerful, and long-lasting enhancement of the HRE population throughout the outer Van Allen radiation zone. The kinds of disturbances witnessed are indicative of the types of events that may commonly occur during the approaching peak in solar activity in the years 2000 and 2001. It will be most important to determine how well space systems can stand up to the multifaceted effects of the space environment over the next several years.
The evidence is strong that HRE fluxes were substantially elevated above average conditions for a period of about 2 weeks before the Galaxy 4 failure. Long-duration HRE enhancements have in the past been convincingly associated with spacecraft operational failure. For example, we know that high fluxes of energetic electrons can lead to a buildup of electric charge deep inside of spacecraft subsystems. In this process, energetic electrons bury themselves in poorly conducting material such as thermal control blankets, electronic boards, coaxial cables, and insulation. Eventually, if the charge builds up more rapidly (because of electrons continuing to hit the spacecraft) than it leaks away (because of low material conductivity), then there can be an electrostatic discharge event. This is much like small, powerful lightning discharge inside of the spacecraft. Such a discharge can damage or destroy a sensitive circuit or subsystem, and the result can be a spacecraft failure.
Scientists involved in the analysis have noted that whether or not the incident on May 19 was caused by "space weather," it nonetheless shows the vulnerability of society to a single spacecraft failure. The vast number of users affected by the loss of just one spacecraft shows how dependent society is on space technology and how fragile communication systems can be. The Galaxy 4 failure had a large impact because the spacecraft was optimally located over the central United States and could best handle digital pager signals. Eighty percent of all pager traffic was being directed through it. Increasingly, phones, televisions, radios, bank transactions, newspapers, credit card systems, and the like depend on satellites for at least part of their links. It seems very inadvisable to have such complex, societally significant systems susceptible to single-spacecraft failures. This seems particularly true as the peak of the 11-year solar activity cycle, in 2000-2001, approaches.
The typical major communication spacecraft has an estimated value of $200-250 million. Over 100 such spacecraft are in operation today and whole new groups of low- to mid-altitude satellites are being placed in orbit. The invested cost of space assets is staggering. Given the recent record of space environmental disturbances, space researchers believe many more highly disruptive spacecraft failures may occur. They suggest that space systems be made immune to the space environment and backup systems be made readily available to cover space system failure whatever the cause.
http://www.agu.org/sci_soc/articles/eisbaker.html
17 February 2009
Warming Will Worsen Water Wars
Warming Will Worsen Water Wars
Very good article in the Washington Post lays out the problem we face.
“Global warming will intensify drought, and it will intensify floods,” explains Stephen Schneider, editor of the journal Climatic Change and a lead author for the authoritative Intergovernmental Panel on Climate Change (IPCC). Why?
“As the air gets warmer, there will be more water in the atmosphere. That’s settled science…. You are going to intensify the hydrologic cycle. Where the atmosphere is configured to have high pressure and droughts, global warming will mean long, dry periods. Where the atmosphere is configured to be wet, you will get more rain, more gully washers.”
http://climateprogress.org/2007/08/24/warming-will-worsen-water-wars/
Terrestrial Effect of Solar Activity
href="http://1.bp.blogspot.com/_dLtx29f7GD0/SZoBbzUBrbI/AAAAAAAAAI0/9z-i4b2Icdo/s1600-h/Solar+Terrestrial+Effects.GIF">
Weather/Climate Model and Weather Modification in Indonesia
and Terrestrial Effect of Solar Activity
The Houw Liong, Faculty of Mathematics and Natural Sciences, ITB
R. Gernowo, Faculty of Earth Science and Technology, ITB
P.M. Siregar, Faculty of Earth Science and Technology, ITB
F.H. Widodo, Weather Modification Unit, BPPT
Abstract
The current study presents the development of forecasting using numerical weather model ( MM5 and WRF) , and numerical climate model (GCM and DARLAM) and adaptive neuro-fuzzy inference system (ANFIS) for forecasting extreme weather/climate in Indonesia based on sunspot number time series .
Case study will be applied in Jabodetabek region and the impact to severe floods of Ciliwung river . The dynamics of Ciliwung river can be studied by system dynamics.
We study also weather modification to reduce negative impacts of extreme weather. Furthermore we discuss possibility of using ground based generator to fill ground water in transition seasons and to reduce severe floods.
We will discuss also the terrestrial effect of solar activity on climate, power system and communication system when maximum solar activity occur.
Keywords : numerical weather/climate model, ANFIS, weather modification, ground based generator, terrestrial effect of solar activity.
Weather/Climate Model and Weather Modification in Indonesia
and Terrestrial Effect of Solar Activity
The Houw Liong, Faculty of Mathematics and Natural Sciences, ITB
R. Gernowo, Faculty of Earth Science and Technology, ITB
P.M. Siregar, Faculty of Earth Science and Technology, ITB
F.H. Widodo, Weather Modification Unit, BPPT
Abstract
The current study presents the development of forecasting using numerical weather model ( MM5 and WRF) , and numerical climate model (GCM and DARLAM) and adaptive neuro-fuzzy inference system (ANFIS) for forecasting extreme weather/climate in Indonesia based on sunspot number time series .
Case study will be applied in Jabodetabek region and the impact to severe floods of Ciliwung river . The dynamics of Ciliwung river can be studied by system dynamics.
We study also weather modification to reduce negative impacts of extreme weather. Furthermore we discuss possibility of using ground based generator to fill ground water in transition seasons and to reduce severe floods.
We will discuss also the terrestrial effect of solar activity on climate, power system and communication system when maximum solar activity occur.
Keywords : numerical weather/climate model, ANFIS, weather modification, ground based generator, terrestrial effect of solar activity.
16 February 2009
Japan Possible EQ cloud
Off coast NE of Japan Possible EQ cloud
Here you can see a Possible EQ cloud over off coast Northeast of Japan,
Result:
Possible EQ with magnitude of about 5M to 6M from 24 hours after appearance to 2 weeks after. the possible epicenter is off coast northwest of Japan as located on the image.
posted by AmirReza AmirEbrahimi @ 12:25 AM
http://earthquake-weather-prediction.blogspot.com/
Antisipasi Bencana Perubahan Iklim
Rabu, 28 Januari 2009 | 23:18 WIB
JAKARTA, RABU — Indonesia menjalin kerja sama dengan Japan for International Cooperation Agency (JICA) dalam mengantisipasi bencana sebagai akibat terjadinya perubahan iklim.
"Jepang memiliki pengalaman dalam menangani bencana semacam ini, ini yang menjadi dasar kerja sama dengan kami," kata Dirjen Sumber Daya Air Departemen PU, Iwan Nusyirwan Diar di Jakarta, Rabu (28/1).
Iwan yang ditemui di sela seminar kerja sama dengan JICA mengenai antisipasi bencana akibat perubahan iklim mengatakan, pihaknya bersama JICA berusaha merumuskan sebuah kebijakan dan strategi pengelolaan sumber daya air menghadapi perubahan iklim. Strategi-strategi tersebut di antaranya, strategi mitigasi dengan mengelola tata air pada lahan-lahan gambut (low land) dalam rangka mengurangi kerentanan kebakaran pada lahan gambut (pengendalian emisi gas rumah kaca) dan mendukung kegiatan penghijauan di daerah aliran sungai yang kritis dan kawasan hulu sungai.
Selain itu, juga strategi adaptasi melalui peningkatan pengelolaan bangunan infrastruktur sumber daya air untuk mendukung ketahan pangan, pengembangan pengelolaan risiko bencana untuk banjir dan kekeringan. Indonesia dan Jepang akan bahu-membahu melakukan perlindungan pantai karena permukaan air laut mengalami kenaikan ditandai dengan mencairnya es di kutub utara. Kampanye hemat air juga bagian kerja sama tersebut.
Strategi tersebut sangat penting dilakukan karena perubahan iklim juga dapat berdampak pada terjadinya krisis pangan, krisis air global, dan krisis energi sebagai akibat dari kondisi perubahan iklim yang ekstrem. Dampak perubahan iklim tidak hanya dialami oleh Indonesia, tetapi juga dialami negara-negara di belahan dunia lainnya termasuk Jepang.
Dari data yang ada menunjukkan bahwa telah terjadi anomali yang signifikan, khususnya dalam 25 tahun terakhir, seperti meningkatnya temperatur global, naiknya permukaan air laut dan sering terjadinya kondisi ekstrem seperti banjir, tanah longsor, dan kekeringan. Bencana alam seperti banjir dan topan juga terjadi di Jepang sebagai salah satu dampak terjadinya perubahan iklim, kata Yoshiaki Nanami, Direktur Kebijakan International Biro Kebijakan Infrastruktur, kementerian Pertanahan, Infrastruktur, Transportasi dan Pariwisata (MLIT).
Pemerintah Jepang menganggap Indonesia sebagai negara kepulauan sangat rentan terkena dampak perubahan iklim karenanya perlu disiapkan rencana kegiatan secara detail dalam upaya mitigasi dan adaptasi perubahan iklim.
WAH
Sumber : Antara
Share on Facebook
A A A
JAKARTA, RABU — Indonesia menjalin kerja sama dengan Japan for International Cooperation Agency (JICA) dalam mengantisipasi bencana sebagai akibat terjadinya perubahan iklim.
"Jepang memiliki pengalaman dalam menangani bencana semacam ini, ini yang menjadi dasar kerja sama dengan kami," kata Dirjen Sumber Daya Air Departemen PU, Iwan Nusyirwan Diar di Jakarta, Rabu (28/1).
Iwan yang ditemui di sela seminar kerja sama dengan JICA mengenai antisipasi bencana akibat perubahan iklim mengatakan, pihaknya bersama JICA berusaha merumuskan sebuah kebijakan dan strategi pengelolaan sumber daya air menghadapi perubahan iklim. Strategi-strategi tersebut di antaranya, strategi mitigasi dengan mengelola tata air pada lahan-lahan gambut (low land) dalam rangka mengurangi kerentanan kebakaran pada lahan gambut (pengendalian emisi gas rumah kaca) dan mendukung kegiatan penghijauan di daerah aliran sungai yang kritis dan kawasan hulu sungai.
Selain itu, juga strategi adaptasi melalui peningkatan pengelolaan bangunan infrastruktur sumber daya air untuk mendukung ketahan pangan, pengembangan pengelolaan risiko bencana untuk banjir dan kekeringan. Indonesia dan Jepang akan bahu-membahu melakukan perlindungan pantai karena permukaan air laut mengalami kenaikan ditandai dengan mencairnya es di kutub utara. Kampanye hemat air juga bagian kerja sama tersebut.
Strategi tersebut sangat penting dilakukan karena perubahan iklim juga dapat berdampak pada terjadinya krisis pangan, krisis air global, dan krisis energi sebagai akibat dari kondisi perubahan iklim yang ekstrem. Dampak perubahan iklim tidak hanya dialami oleh Indonesia, tetapi juga dialami negara-negara di belahan dunia lainnya termasuk Jepang.
Dari data yang ada menunjukkan bahwa telah terjadi anomali yang signifikan, khususnya dalam 25 tahun terakhir, seperti meningkatnya temperatur global, naiknya permukaan air laut dan sering terjadinya kondisi ekstrem seperti banjir, tanah longsor, dan kekeringan. Bencana alam seperti banjir dan topan juga terjadi di Jepang sebagai salah satu dampak terjadinya perubahan iklim, kata Yoshiaki Nanami, Direktur Kebijakan International Biro Kebijakan Infrastruktur, kementerian Pertanahan, Infrastruktur, Transportasi dan Pariwisata (MLIT).
Pemerintah Jepang menganggap Indonesia sebagai negara kepulauan sangat rentan terkena dampak perubahan iklim karenanya perlu disiapkan rencana kegiatan secara detail dalam upaya mitigasi dan adaptasi perubahan iklim.
WAH
Sumber : Antara
Share on Facebook
A A A
Akibat Pemanasan Global menurut IPCC
Akibat meningkatnya pemanasan global antara lain :
. Sebelas dari dua belas tahun terakhir merupakan tahun-tahun terhangat dalam temperatur permukaan global sejak 1850. Tingkat pemanasan rata-rata selama lima puluh tahun terakhir hampir dua kali lipat dari rata-rata seratus tahun terakhir. Temperatur rata-rata global naik sebesar 0.74 oC selama abad ke-20, dimana pemanasan lebih dirasakan pada daerah daratan daripada lautan.
• Jumlah karbondioksida yang lebih banyak di atmosfer : Karbondioksida adalah penyebab paling dominan terhadap adanya perubahan iklim saat ini dan konsentrasinya di atmosfer telah naik dari masa pra-industri yaitu 278 ppm (parts-permillion) menjadi 379 ppm pada tahun 2005.
• Lebih banyak air, tetapi penyebarannya tidak merata : Adanya peningkatan presipitasi pada beberapa dekade terakhir telah diamati di bagian Timur dari Amerika Utara dan Amerika Selatan, Eropa Utara, Asia Utara serta Asia Tengah. Tetapi pada daerah Sahel, Mediteranian, Afrika Selatan dan sebagian Asia Selatan mengalami pengurangan presipitasi. Sejak tahun 1970 telah terjadi kekeringan yang lebih kuat dan lebih lama.
• Kenaikan permukaan Laut : Saat ini dilaporkan tengah terjadi kenaikan
muka laut dari abad ke-19 hingga abad ke-20, dan kenaikannya pada abad
20 adalah sebesar 0.17 meter. Pengamatan geologi mengindikasikan bahwa
kenaikan muka laut pada 2000 tahun sebelumnya jauh lebih sedikit daripada
kenaikan muka laut pada abad 20. Temperatur rata-rata laut global telah
meningkat pada kedalaman paling sedikit 3000 meter.
Namun perlu diingat bahwa prediksi model iklim untuk jangka panjang mempunyai akurasi rendah.
(HouwLiong)
. Sebelas dari dua belas tahun terakhir merupakan tahun-tahun terhangat dalam temperatur permukaan global sejak 1850. Tingkat pemanasan rata-rata selama lima puluh tahun terakhir hampir dua kali lipat dari rata-rata seratus tahun terakhir. Temperatur rata-rata global naik sebesar 0.74 oC selama abad ke-20, dimana pemanasan lebih dirasakan pada daerah daratan daripada lautan.
• Jumlah karbondioksida yang lebih banyak di atmosfer : Karbondioksida adalah penyebab paling dominan terhadap adanya perubahan iklim saat ini dan konsentrasinya di atmosfer telah naik dari masa pra-industri yaitu 278 ppm (parts-permillion) menjadi 379 ppm pada tahun 2005.
• Lebih banyak air, tetapi penyebarannya tidak merata : Adanya peningkatan presipitasi pada beberapa dekade terakhir telah diamati di bagian Timur dari Amerika Utara dan Amerika Selatan, Eropa Utara, Asia Utara serta Asia Tengah. Tetapi pada daerah Sahel, Mediteranian, Afrika Selatan dan sebagian Asia Selatan mengalami pengurangan presipitasi. Sejak tahun 1970 telah terjadi kekeringan yang lebih kuat dan lebih lama.
• Kenaikan permukaan Laut : Saat ini dilaporkan tengah terjadi kenaikan
muka laut dari abad ke-19 hingga abad ke-20, dan kenaikannya pada abad
20 adalah sebesar 0.17 meter. Pengamatan geologi mengindikasikan bahwa
kenaikan muka laut pada 2000 tahun sebelumnya jauh lebih sedikit daripada
kenaikan muka laut pada abad 20. Temperatur rata-rata laut global telah
meningkat pada kedalaman paling sedikit 3000 meter.
Namun perlu diingat bahwa prediksi model iklim untuk jangka panjang mempunyai akurasi rendah.
(HouwLiong)
Perubahan Iklim Dunia
Kuliah Umum Perubahan Iklim Dunia
Jika tidak ada tindakan yang dilakukan untuk mengurangi gas rumah kaca, maka dunia di tahun 2050 akan mengalami guncangan iklim dan kondisi. Resor ski di pengunungan Alpin kemungkinan ditutup karena kekurangan salju. Pantai-pantai Mediterania akan hilang dengan meningkatnya permukaan air laut. Demikian pula Gurun Sahara bergerak dari Mediterania ke arah Selatan Spanyol dan Sicilia.
Demikian disampaikan Menteri Negara Lingkungan Hidup Prof (Hon) Ir Rachmat Witoelar saat Presentasi Pada Studium Generale di Fakultas Geografi UGM, Senin (11/8). Dihadapan civitas akademika UGM, dirinya menyampaikan orasi bertajuk "Pemanasan Global, Perubahan Iklim & Pembangunan Berkelanjutan: Peran Strategis Indonesia Dalam Mengatasi Perubahan Iklim".
Selain itu, katanya, beberapa wilayah dipermukaan bumi akan mengalami kekurangan air. Seperti kekurangan air di Timur Tengah. Hilangnya delta sungai Nil. lantas, sepertiga bagian Bangladesh terancam serta hilangnya kepulauan Maldives dan lain-lain.
"Indonesia pun tak lepas dari dampak kerusakan alam ini. Beberapa daerah di pesisir pantai akan terancam karena tenggelam, seperti pinggiran pantai di Jakarta," ujarnya.
Beberapa strategi pun disusun dan dilakukan sejak kini. Kata Menteri beberapa aspek strategis penanganan perubahan Iklim di Indonesia tersebut antara lain langkah strategis membentuk Dewan Nasional Perubahan Iklim (Perpres 46/2008). "Yaitu mengintegrasikan kebijakan untuk melanjutkan keputusan Bali Roadmap kedalam kebijakan nasional dan daerah Melaksanakan RAN PI (Rencana Aksi Dalam Menghadapi Perubahan Iklim) serta mensosisasikannya ke banyak pihak," tambahnya. (Humas UGM)
Komentar:
Namun, harus diingat bahwa akurasi model iklim untuk memprediksi 50 tahun ke depan mempunyai akurasi yang rendah, karena sifat khaos model iklim.
(HouwLiong)
Jika tidak ada tindakan yang dilakukan untuk mengurangi gas rumah kaca, maka dunia di tahun 2050 akan mengalami guncangan iklim dan kondisi. Resor ski di pengunungan Alpin kemungkinan ditutup karena kekurangan salju. Pantai-pantai Mediterania akan hilang dengan meningkatnya permukaan air laut. Demikian pula Gurun Sahara bergerak dari Mediterania ke arah Selatan Spanyol dan Sicilia.
Demikian disampaikan Menteri Negara Lingkungan Hidup Prof (Hon) Ir Rachmat Witoelar saat Presentasi Pada Studium Generale di Fakultas Geografi UGM, Senin (11/8). Dihadapan civitas akademika UGM, dirinya menyampaikan orasi bertajuk "Pemanasan Global, Perubahan Iklim & Pembangunan Berkelanjutan: Peran Strategis Indonesia Dalam Mengatasi Perubahan Iklim".
Selain itu, katanya, beberapa wilayah dipermukaan bumi akan mengalami kekurangan air. Seperti kekurangan air di Timur Tengah. Hilangnya delta sungai Nil. lantas, sepertiga bagian Bangladesh terancam serta hilangnya kepulauan Maldives dan lain-lain.
"Indonesia pun tak lepas dari dampak kerusakan alam ini. Beberapa daerah di pesisir pantai akan terancam karena tenggelam, seperti pinggiran pantai di Jakarta," ujarnya.
Beberapa strategi pun disusun dan dilakukan sejak kini. Kata Menteri beberapa aspek strategis penanganan perubahan Iklim di Indonesia tersebut antara lain langkah strategis membentuk Dewan Nasional Perubahan Iklim (Perpres 46/2008). "Yaitu mengintegrasikan kebijakan untuk melanjutkan keputusan Bali Roadmap kedalam kebijakan nasional dan daerah Melaksanakan RAN PI (Rencana Aksi Dalam Menghadapi Perubahan Iklim) serta mensosisasikannya ke banyak pihak," tambahnya. (Humas UGM)
Komentar:
Namun, harus diingat bahwa akurasi model iklim untuk memprediksi 50 tahun ke depan mempunyai akurasi yang rendah, karena sifat khaos model iklim.
(HouwLiong)
15 February 2009
Chaotic Nature of Cilmate Models
Lorenz next constructed a simulacrum of climate in a simple mathematical model with some feedbacks, and ran it repeatedly through a computer with minor changes in the initial conditions. His initial plan was simply to compile statistics for the various ways his model climate diverged from its normal state. He wanted to check the validity of the procedures some meteorologists were promoting for long-range "statistical forecasting," along the lines of the traditional idea that climate was an average over temporary variations. But he could not find any valid way to statistically combine the different computer results to predict a future state. It was impossible to prove that a "climate" existed at all, in the traditional sense of a stable long-term average. Like the fluid circulation in some of the dishpan experiments, it seemed that climate could shift in a completely arbitrary way.
These ideas spread among climate scientists, especially at a landmark conference on "Causes of Climate Change" held in Boulder, Colorado in August 1965. Lorenz, invited to give the opening address, explained that the slightest change of initial conditions might randomly bring a huge change in the future climate. "Climate may or may not be deterministic," he concluded. "We shall probably never know for sure." Other meteorologists at the conference pored over new evidence that almost trivial astronomical shifts of the Earths orbit might have "triggered" past ice ages.. Summing up a consensus at the end of the conference, leaders of the field agreed that minor and transitory changes in the past "may have sufficed to 'flip' the atmospheric circulation from one state to another."
Until the future actually came, there would be no way to prove that the modelers understood all the essential forces. If an unlucky combination sent the real climate temporarily into one of the unusual states found in some model runs, that could confuse people about what was happening. But it was not likely to change the eventual outcome. What was no longer in doubt was the most important insight produced by the half-century of computer experiments. Under some circumstances a fairly small change in conditions, even something that seemed so slight as an increase of greenhouse gases, could nudge climate into a severely different state. The climate looked less like a simple predictable system than like a confused beast, which a dozen different forces were prodding in different directions. It responded sluggishly, but once it began to move it would be hard to stop.
http://www.aip.org/history/climate/chaos.htm#L_0565
These ideas spread among climate scientists, especially at a landmark conference on "Causes of Climate Change" held in Boulder, Colorado in August 1965. Lorenz, invited to give the opening address, explained that the slightest change of initial conditions might randomly bring a huge change in the future climate. "Climate may or may not be deterministic," he concluded. "We shall probably never know for sure." Other meteorologists at the conference pored over new evidence that almost trivial astronomical shifts of the Earths orbit might have "triggered" past ice ages.. Summing up a consensus at the end of the conference, leaders of the field agreed that minor and transitory changes in the past "may have sufficed to 'flip' the atmospheric circulation from one state to another."
Until the future actually came, there would be no way to prove that the modelers understood all the essential forces. If an unlucky combination sent the real climate temporarily into one of the unusual states found in some model runs, that could confuse people about what was happening. But it was not likely to change the eventual outcome. What was no longer in doubt was the most important insight produced by the half-century of computer experiments. Under some circumstances a fairly small change in conditions, even something that seemed so slight as an increase of greenhouse gases, could nudge climate into a severely different state. The climate looked less like a simple predictable system than like a confused beast, which a dozen different forces were prodding in different directions. It responded sluggishly, but once it began to move it would be hard to stop.
http://www.aip.org/history/climate/chaos.htm#L_0565
Akibat Urbanisasi di Indonesia
Perkembangan urbanisasi di Indonesia perlu dicermati karena dengan adanya urbanisasi ini, kecepatan pertumbuhan perkotaan dan pedesaan menjadi semakin tinggi. Pada tahun 1990, persentase penduduk perkotaan baru mencapai 31 persen dari seluruh penduduk Indonesia. Pada tahun 2000 angka tersebut berubah menjadi 42 persen. Diperkirakan pada tahun 2025 keadaan akan terbalik dimana 57 persen penduduk adalah perkotaan, dan 43 persen sisanya adalah rakyat yang tinggal di pedesaan. Dengan adanya sentralisasi pertumbuhan dan penduduk, maka polusi pun semakin terkonsentrasi di kota-kota besar sehingga udara pun semakin kotor dan tidak layak.
Kota-kota besar terutama Jakarta adalah sasaran dari pencari kerja dari pedesaan dimana dengan adanya modernisasi teknologi, rakyat pedesaan selalu dibombardir dengan kehidupan serba wah yang ada di kota besar sehingga semakin mendorong mereka meninggalkan kampungnya. Secara statistik, pada tahun 1961 Jakarta berpenduduk 2,9 juta jiwa dan melonjak menjadi 4,55 juta jiwa 10 tahun kemudian. Pada tahun 1980 bertambah menjadi 6,50 juta jiwa dan melonjak lagi menjadi 8,22 juta jiwa pada tahun 1990. Yang menarik, dalam 10 tahun antara 1990-2000 lalu, penduduk Jakarta hanya bertambah 125.373 jiwa sehingga menjadi 8,38 juta jiwa. Data tahun 2007 menyebutkan Jakarta memiliki jumlah penduduk 8,6 juta jiwa, tetapi diperkirakan rata-rata penduduk yang pergi ke Jakarta di siang hari adalah 6 hingga 7 juta orang atau hampir mendekati jumlah total penduduk Jakarta. Hal ini juga disebabkan karena lahan perumahan yang semakin sempit dan mahal di Jakarta sehingga banyak orang, walaupun bekerja di Jakarta, tinggal di daerah Jabotabek yang mengharuskan mereka menjadi komuter.
Pada akhirnya, pertumbuhan populasi yang tinggi akan mengakibatkan lingkaran setan yang tidak pernah habis. Populasi tinggi yang tidak dibarengi dengan lahan pangan dan energi yang cukup akan mengakibatkan ketidakseimbangan antara supply dan demand yang bisa menyebabkan harga menjadi mahal sehingga seperti yang sedang terjadi sekarang, inflasi semakin tinggi, harga bahan makanan semakin tinggi sehingga kemiskinan pun semakin banyak. Semakin menurunnya konsumsi masyarakat akan menyebabkan perusahaan merugi dan mem-PHK karyawannya sebagai langkah efisiensi, sehingga semakin banyak lagi kemiskinan.
Jadi, kita mudah saja bilang, kapan negara kita bisa swasembada? Apa bisa kalau masih mau punya banyak anak? Bagaimana dengan masa depan anak cucu kita kalau lahan sudah tidak tersedia, tanah rusak akibat bahan kimia, air tanah tercemar dan bahkan habis sehingga tidak bisa disedot lagi? Bagaimana kita mau menghemat makanan dan air kalau populasi terus berkembang gila-gilaan?
Populasi seperti hal yang besar dan politis yang diomongkan banyak orang. Tetapi hal ini juga merupakan hal yang dapat dilakukan oleh setiap orang. Seperti yang telah kita lakukan dahulu dan berhasil, kita bisa Ikut program Keluarga Berencana (KB) atau paling tidak memiliki rencana KB sebagai komposisi keluarga yang ideal. Kalau tidak mau pusing soal KB, paling tidak pakai kondom dan jika anda malu untuk beli kondom di tempat publik maka sekarang sudah bisa beli lewat internet melalui kondomku.com sehingga tidak perlu malu lagi untuk membeli di toko.
Krisis pangan sudah dimulai di seluruh dunia. Harga semakin melejit dan pada akhirnya bukan karena kita tidak mampu membeli makanan, tetapi apakah makanan itu bisa tersedia. Kalau bukan kita yang bertindak dari sekarang, masa depan anak dan cucu kita bisa benar-benar hancur sehingga kita yang berpesta pora pada saat ini baru akan merasakan akibatnya nanti.
Sumber:
Bapeda Jabar
BKKBN
Komentar :
Untuk memberi solusi pada masalah urbanisasi, khususnya di pulau Jawa cara yang terbaik ialah memindahkan secara bertahap pusat pertumbuhan industri/ekonomi ke luar pulau Jawa, sehingga terjadi transmigrasi spontan ke luar pulau Jawa.
(HouwLiong)
Kota-kota besar terutama Jakarta adalah sasaran dari pencari kerja dari pedesaan dimana dengan adanya modernisasi teknologi, rakyat pedesaan selalu dibombardir dengan kehidupan serba wah yang ada di kota besar sehingga semakin mendorong mereka meninggalkan kampungnya. Secara statistik, pada tahun 1961 Jakarta berpenduduk 2,9 juta jiwa dan melonjak menjadi 4,55 juta jiwa 10 tahun kemudian. Pada tahun 1980 bertambah menjadi 6,50 juta jiwa dan melonjak lagi menjadi 8,22 juta jiwa pada tahun 1990. Yang menarik, dalam 10 tahun antara 1990-2000 lalu, penduduk Jakarta hanya bertambah 125.373 jiwa sehingga menjadi 8,38 juta jiwa. Data tahun 2007 menyebutkan Jakarta memiliki jumlah penduduk 8,6 juta jiwa, tetapi diperkirakan rata-rata penduduk yang pergi ke Jakarta di siang hari adalah 6 hingga 7 juta orang atau hampir mendekati jumlah total penduduk Jakarta. Hal ini juga disebabkan karena lahan perumahan yang semakin sempit dan mahal di Jakarta sehingga banyak orang, walaupun bekerja di Jakarta, tinggal di daerah Jabotabek yang mengharuskan mereka menjadi komuter.
Pada akhirnya, pertumbuhan populasi yang tinggi akan mengakibatkan lingkaran setan yang tidak pernah habis. Populasi tinggi yang tidak dibarengi dengan lahan pangan dan energi yang cukup akan mengakibatkan ketidakseimbangan antara supply dan demand yang bisa menyebabkan harga menjadi mahal sehingga seperti yang sedang terjadi sekarang, inflasi semakin tinggi, harga bahan makanan semakin tinggi sehingga kemiskinan pun semakin banyak. Semakin menurunnya konsumsi masyarakat akan menyebabkan perusahaan merugi dan mem-PHK karyawannya sebagai langkah efisiensi, sehingga semakin banyak lagi kemiskinan.
Jadi, kita mudah saja bilang, kapan negara kita bisa swasembada? Apa bisa kalau masih mau punya banyak anak? Bagaimana dengan masa depan anak cucu kita kalau lahan sudah tidak tersedia, tanah rusak akibat bahan kimia, air tanah tercemar dan bahkan habis sehingga tidak bisa disedot lagi? Bagaimana kita mau menghemat makanan dan air kalau populasi terus berkembang gila-gilaan?
Populasi seperti hal yang besar dan politis yang diomongkan banyak orang. Tetapi hal ini juga merupakan hal yang dapat dilakukan oleh setiap orang. Seperti yang telah kita lakukan dahulu dan berhasil, kita bisa Ikut program Keluarga Berencana (KB) atau paling tidak memiliki rencana KB sebagai komposisi keluarga yang ideal. Kalau tidak mau pusing soal KB, paling tidak pakai kondom dan jika anda malu untuk beli kondom di tempat publik maka sekarang sudah bisa beli lewat internet melalui kondomku.com sehingga tidak perlu malu lagi untuk membeli di toko.
Krisis pangan sudah dimulai di seluruh dunia. Harga semakin melejit dan pada akhirnya bukan karena kita tidak mampu membeli makanan, tetapi apakah makanan itu bisa tersedia. Kalau bukan kita yang bertindak dari sekarang, masa depan anak dan cucu kita bisa benar-benar hancur sehingga kita yang berpesta pora pada saat ini baru akan merasakan akibatnya nanti.
Sumber:
Bapeda Jabar
BKKBN
Komentar :
Untuk memberi solusi pada masalah urbanisasi, khususnya di pulau Jawa cara yang terbaik ialah memindahkan secara bertahap pusat pertumbuhan industri/ekonomi ke luar pulau Jawa, sehingga terjadi transmigrasi spontan ke luar pulau Jawa.
(HouwLiong)
14 February 2009
Earthquake Clouds
Earthquake Clouds
a reliable precursor
Zhonghao Shou
Published in Science and Utopya 64, page 53~57, October 1999 (in Turkish)
On August 17, the 7.4 Turkey earthquake occurred. It is the only one larger than 6.9 in the west area from Sri Lanka since May 11, 1997. Its low probability suggests that the hometown of that cloud should be in Turkey. This example tells us that to detect the origin of the cloud, we have a tough job to do.
To prevent a large earthquake, I suggest Turkish people to make an hourly surface wind velocity distribution, and a greatly magnified hourly satellite image, or to detect the vapor directly. I believe that earthquake clouds are reliable for short term prediction, and hope that Turkish people would like this paper.
Acknowledgments.
I thank the USGS, Two "jpg" web pages of uk, Caltech libraries, Dr. Moore, G. and three Caltech Ph.D. students Shou, W.Y., Harrington, D. and Wang, A. S.
References and Notes
[1] Li, D.J. Earthquake Clouds, 148-150 (Xue Lin Public Store, Shanghai, China, 1982).
[2] Dunbar, P.K., Lockridge, P.A. & Whiteside, L.S. World Data Center A for Solid Earth Geophysics, 146 (National Geophysical Data Center, Colorado, 1992).
[3] Zhou, H.L. Moment magnitudes of historical earthquakes in China. Earthquake Research in China 1, No. 3, 347-360 (1987).
[4] Haicheng Earthquake Study Delegation. Prediction of the Haicheng earthquake. Eos 58, 236-272 (1977).
[5] Spray, J.G. A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204, 205-221 (1992).
[6] Swanson, M.T. Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics 204, 223-242 (1992).
[7] Koch, N. & Masch, L. Formation of Alpine mylonites and pseudotachylytes at the base of the Silvretta nappe, Eastern Alps. Tectonophysics 204, 289-306 (1992).
[8] Techmer, K.S., Ahrendt, H. & Weber, K. The development of pseudotachylyte in the Ivrea-Verbano zone of the Italian Alps. Tectonophysics 204, 307-322 (1992).
[9] Shi, H. X., Cai, Z.H. & Gao, M.X. Anomalous migration of shallow groundwater and gases in the Beijing region and the 1976 Tangshan earthquake. Acta Seismologica Sinica 2, No.1, 55-64 (1980).
[10] Yang, C.S. Temporal and spatial distribution of anomalous ground water changes before the 1975 Haicheng earthquake. Acta Seismologica Sinica 4, No.1, 84-89 (1982).
[11] Glowacka, E. & Nava, F. A. Major earthquakes in Mexicali Valley, Mexico, and fluid extraction at Cerro Prieto geothermal field. Bulletin of the Seismological Society of America 86, No.1A , 93-105 (1996).
[12] Haas, J.L.Jr. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Eco. Geol. 66, 940-946 (1971).
[13] Chandrasekharam, D. Ateam emanation due to seismic pumping, Killari, Maharashtra. Geol. Surv. Ind. Spl. Pub. No.27, 229-233 (1995).
[14] Lane, T. & Waag, C. Ground-water eruptions in the Chilly Buttes area, Central Idaho. Special Publications 91, 19 (1985).
[15] Shi, H.X. & Cai, Z.H. Case examples of peculiar phenomena of subsurface fluid behavior observed in China preceding earthquakes. Acta Seismologica Sinica 2, No.4, 425-429 (1980).
[16] Zhang, D.Y. & Zhao, G.M. Anomalous variations in oil wells distributed in the Bohai bay oil field before and after the Tangshan earthquake of 1976. Acta Seismologica Sinica 5, No.3, 360-369 (1983).
[17] Giang, Z. J. et cl. An experimental study of temperature increasing mechanism of satellitic thermo-infrared. Acta Seismologica Sinica 19, No. 2, 197-201 (1997).
[18] Bolt, B.A. Stimulation of earthquakes by water. Earthquakes, 135-139 (W.H. Freeman and Company, New York, 1988).
[19] Kirby, S.H & McCormick, J.W. Inelastic properties of rocks and minerals: strength and rheology. Practical Handbook of Physical Properties of Rocks and Minerals, 179-185 (ed. Carmichael, R.S., CRC Press, Boca Raton, Florida, 1990).
[20] Tang, X. Anomalous meteorology. A General History of Earthquake Study in China, 49-84 (Science Press, Beijing, 1988, in English).
Fig. 2 Image 199907161200.jpg The 7.4 Turkey earthquake cloud.
* All predictions are listed on Web Site: http://members.xoom.com/EQPrediction/ (Before)and http://quake.exit.com (Now)
13 February 2009
Prediksi dengan Metode ANFIS
Sinar Harapan
Jumat, 13 Februari 2009
Prediksi dengan Metode ANFIS
Hujan Terus Mengguyur sampai 2007
Oleh
Merry Magdalena
JAKARTA - Hujan deras dan ancaman banjir akan terus berlanjut sampai tahun 2007. Tapi tidak separah apa yang terjadi pada 2002 silam. Setidaknya itulah hasil prediksi dengan mengamati titik aktivitas matahari alias sun spot.
Tahukah Anda bahwa matahari memiliki peran terhadap banjir? Selintas fakta ini menggelikan. Bagaimana mungkin matahari nun jauh di sana ikut bertanggung jawab terhadap banjir di depan rumah kita. Memang, alam memiliki keterkaitan yang begitu erat.
“Cuaca dan iklim bumi sangat dipengaruhi aktivitas matahari. Karena posisi dan aktivitasnya selalu tetap, kita dapat memprediksi cuaca,” ujar Prof Dr The Houw Liong, ilmuwan dari Departemen Fisika Institut Teknologi Bandung (ITB) kepada pers di Jakarta, belum lama ini. Pengamatan terhadap aktivitas matahari ini bisa dilakukan terhadap sun spot alias titik imbang matahari. Dari data yang sudah direkam selama ini didapat pola yang tetap dan dari pola itulah prediksi bisa dilakukan.
The Huow menjelaskan bahwa pada saat sun spot minimum, pada sejumlah daerah di wilayah Indonesia timur akan terjadi curah hujan maksimum alias tinggi. Sebaliknya, ketika sun spot maksimum, curah hujan di wilayah tadi akan mereda.
Tak Menentu
“Pada 2006 dan 2007 terlihat bahwa sun spot minimum, ini berarti Indonesia bagian timur akan mengalami curah hujan tinggi. Ini sudah bisa terlihat dengan adanya bencana banjir di Jawa Timur. Gejala ini juga menunjukkan akan adanya La Nina,” ungkap The Houw Liong.
Tapi hal serupa tidak terjadi di wilayah Indonesia tengah, terutama yang berdekatan dengan garis katulistiwa seperti Pontianak. Di daerah tersebut akan berlaku hukum yang berlawanan. Di saat sun spot maksimum, curah hujan justru minimum, begitu juga sebaliknya.
Bagaimana dengan di Jakarta? Seperti kita tahu selama ini curah hujan di Jakarta seolah tak menentu. Dari pola yang dipelajari The Houw Liong bersama timnya, didapat hasil bahwa sudah sejak lama Jakarta memiliki pola yang tidak konsisten. Curah hujan di Ibu Kota ini juga tidak tetap. Ini juga berlaku di wilayah Jawa Barat dan Tengah. Jadi, jangan heran kalau prediksi cuaca kerap meleset dan mengakibatkan banjir.
Karena tak bisa diprediksi dengan hanya mengandalkan sun spot maka dikembangkan teknik yang disebut Adaptive Neuro Fuzzy Interference System (ANFIS). Bersama dengan Badan Pengkajian dan Penerapan Teknologi (BPPT) dan Badan Meteorologi dan Geofisika (BMG), ITB sejak tiga tahun lalu melakukan studi yang berkaitan dengan prediksi hujan ini.
“Kami melakukan prediksi menggunakan pemodelan tinggi muka air. Dulu pemodelan dilakukan terhadap tinggi muka air satu sungai saja, yakni Ciliwung. Mulai sekarang kami melakukannya terhadap tiga sungai, yakni Ciliwung, Sunter dan Pesanggrahan,” ungkap Jana Tjahjana Anggadireja, Deputi Bidang Teknologi Pengembangan Sumber Daya Alam Badan Pengkajian dan Penerapan Teknologi (BPPT) dalam kesempatan serupa.
La Nina
Prediksi jangka panjang, yaitu sekitar sembilan bulan sebelum kejadian dilakukan berdasarkan deret waktu bulanan bilangan sun spot, indeks El Nino - Southern Oscillation (ENSO) multivariabel yang dipakai untuk memprediksi ENSO. Metode prediksi ini menunjukkan bahwa awal 2006 ini sebagian besar wilayah Indonesia akan mengalami hujan di atas rata-rata, kecuali Indonesia bagian tengah.
Kemudian prediksi jangka menengah yaitu 1-6 bulan sebelum kejadian dilakukan dengan memakai deret waktu hujan bulanan rata-rata dari tujuh stasiun di DKI dan tinggi muka air Sungai Ciliwung, Pesanggrahan dan Sunter dengan metode ANFIS.
Prediksi ini menunjukkan bahwa pada Februari 2006 merupakan puncak tertinggi muka air pada ketiga sungai besar yang melintasi Jakarta. Namun, titik muka air ini hampir sama dengan tahun 2003, 2004 dan 2005. Yang jelas tidak setinggi tahun 2002 yang mengakibatkan banjir besar di wilayah DKI.
Sementara itu, prediksi jangka pendek yang terjadi hanya beberapa minggu sebelum kejadian dilakukan berdasarkan deret waktu lima harian (pentad) diperkuat dengan prediksi Madden Julian Oscillation (MJO).
Dari metode tersebut disimpulkan bahwa awal 2006 akan menuju La Nina lemah. Indonesia bagian timur dan sebagian besar Pulau Jawa akan mengalami curah hujan di atas rata-rata. Puncak curah hujan DKI dan tinggi muka air ketiga sungai besar yang melalui Jakarta akan terjadi pada Februari 2006.
Komentar:
Tulisan tsb berdasarkan wawancara tahun 2005.Berdasarkan studi lebih lanjut ternyata hujan ekstrim di wilayah Jakarta terjadi ketika sekitar sunspot maksimum seperti yang terjadi pada tahun 2002 atau intensitas sinar kosmik maksimum seperti yang terjadi pada 2007.Pada puncak sunspot maksimum tahun 2013 banjir besar terjadi lagi di Jakarta.
Prediksi curah hujan bulanan puncak tahun 2009 dengan Anfis untuk Jabotabek terjadi pada bulan Februari.
(HouwLiong)
Jumat, 13 Februari 2009
Prediksi dengan Metode ANFIS
Hujan Terus Mengguyur sampai 2007
Oleh
Merry Magdalena
JAKARTA - Hujan deras dan ancaman banjir akan terus berlanjut sampai tahun 2007. Tapi tidak separah apa yang terjadi pada 2002 silam. Setidaknya itulah hasil prediksi dengan mengamati titik aktivitas matahari alias sun spot.
Tahukah Anda bahwa matahari memiliki peran terhadap banjir? Selintas fakta ini menggelikan. Bagaimana mungkin matahari nun jauh di sana ikut bertanggung jawab terhadap banjir di depan rumah kita. Memang, alam memiliki keterkaitan yang begitu erat.
“Cuaca dan iklim bumi sangat dipengaruhi aktivitas matahari. Karena posisi dan aktivitasnya selalu tetap, kita dapat memprediksi cuaca,” ujar Prof Dr The Houw Liong, ilmuwan dari Departemen Fisika Institut Teknologi Bandung (ITB) kepada pers di Jakarta, belum lama ini. Pengamatan terhadap aktivitas matahari ini bisa dilakukan terhadap sun spot alias titik imbang matahari. Dari data yang sudah direkam selama ini didapat pola yang tetap dan dari pola itulah prediksi bisa dilakukan.
The Huow menjelaskan bahwa pada saat sun spot minimum, pada sejumlah daerah di wilayah Indonesia timur akan terjadi curah hujan maksimum alias tinggi. Sebaliknya, ketika sun spot maksimum, curah hujan di wilayah tadi akan mereda.
Tak Menentu
“Pada 2006 dan 2007 terlihat bahwa sun spot minimum, ini berarti Indonesia bagian timur akan mengalami curah hujan tinggi. Ini sudah bisa terlihat dengan adanya bencana banjir di Jawa Timur. Gejala ini juga menunjukkan akan adanya La Nina,” ungkap The Houw Liong.
Tapi hal serupa tidak terjadi di wilayah Indonesia tengah, terutama yang berdekatan dengan garis katulistiwa seperti Pontianak. Di daerah tersebut akan berlaku hukum yang berlawanan. Di saat sun spot maksimum, curah hujan justru minimum, begitu juga sebaliknya.
Bagaimana dengan di Jakarta? Seperti kita tahu selama ini curah hujan di Jakarta seolah tak menentu. Dari pola yang dipelajari The Houw Liong bersama timnya, didapat hasil bahwa sudah sejak lama Jakarta memiliki pola yang tidak konsisten. Curah hujan di Ibu Kota ini juga tidak tetap. Ini juga berlaku di wilayah Jawa Barat dan Tengah. Jadi, jangan heran kalau prediksi cuaca kerap meleset dan mengakibatkan banjir.
Karena tak bisa diprediksi dengan hanya mengandalkan sun spot maka dikembangkan teknik yang disebut Adaptive Neuro Fuzzy Interference System (ANFIS). Bersama dengan Badan Pengkajian dan Penerapan Teknologi (BPPT) dan Badan Meteorologi dan Geofisika (BMG), ITB sejak tiga tahun lalu melakukan studi yang berkaitan dengan prediksi hujan ini.
“Kami melakukan prediksi menggunakan pemodelan tinggi muka air. Dulu pemodelan dilakukan terhadap tinggi muka air satu sungai saja, yakni Ciliwung. Mulai sekarang kami melakukannya terhadap tiga sungai, yakni Ciliwung, Sunter dan Pesanggrahan,” ungkap Jana Tjahjana Anggadireja, Deputi Bidang Teknologi Pengembangan Sumber Daya Alam Badan Pengkajian dan Penerapan Teknologi (BPPT) dalam kesempatan serupa.
La Nina
Prediksi jangka panjang, yaitu sekitar sembilan bulan sebelum kejadian dilakukan berdasarkan deret waktu bulanan bilangan sun spot, indeks El Nino - Southern Oscillation (ENSO) multivariabel yang dipakai untuk memprediksi ENSO. Metode prediksi ini menunjukkan bahwa awal 2006 ini sebagian besar wilayah Indonesia akan mengalami hujan di atas rata-rata, kecuali Indonesia bagian tengah.
Kemudian prediksi jangka menengah yaitu 1-6 bulan sebelum kejadian dilakukan dengan memakai deret waktu hujan bulanan rata-rata dari tujuh stasiun di DKI dan tinggi muka air Sungai Ciliwung, Pesanggrahan dan Sunter dengan metode ANFIS.
Prediksi ini menunjukkan bahwa pada Februari 2006 merupakan puncak tertinggi muka air pada ketiga sungai besar yang melintasi Jakarta. Namun, titik muka air ini hampir sama dengan tahun 2003, 2004 dan 2005. Yang jelas tidak setinggi tahun 2002 yang mengakibatkan banjir besar di wilayah DKI.
Sementara itu, prediksi jangka pendek yang terjadi hanya beberapa minggu sebelum kejadian dilakukan berdasarkan deret waktu lima harian (pentad) diperkuat dengan prediksi Madden Julian Oscillation (MJO).
Dari metode tersebut disimpulkan bahwa awal 2006 akan menuju La Nina lemah. Indonesia bagian timur dan sebagian besar Pulau Jawa akan mengalami curah hujan di atas rata-rata. Puncak curah hujan DKI dan tinggi muka air ketiga sungai besar yang melalui Jakarta akan terjadi pada Februari 2006.
Komentar:
Tulisan tsb berdasarkan wawancara tahun 2005.Berdasarkan studi lebih lanjut ternyata hujan ekstrim di wilayah Jakarta terjadi ketika sekitar sunspot maksimum seperti yang terjadi pada tahun 2002 atau intensitas sinar kosmik maksimum seperti yang terjadi pada 2007.Pada puncak sunspot maksimum tahun 2013 banjir besar terjadi lagi di Jakarta.
Prediksi curah hujan bulanan puncak tahun 2009 dengan Anfis untuk Jabotabek terjadi pada bulan Februari.
(HouwLiong)
Pengembangan dan Validasi Model Iklim
Pengembangan dan Validasi Model Iklim
Bambang Siswanto1), Zadrach L. Dupe2), Yanto Sugianto3), dan Yunus Swarinoto4)
1)Pusat Pemanfaatan Sains Atmosfer dan Iklim, LAPAN
2)Departement Geofisika dan Meteorologi, Institut Teknologi Bandung
3)Pusat Penelitian Tanah dan Agroklimat, Departemen Pertanian
4)Badan Meteorologi dan Geofisika
Email: siswanto@bdg.lapan.go.id, bambang_siswanto@hotmail.com
Pendahuluan
Riset pengetahuan cuaca dan iklim termasuk aplikasinya, memberikan wawasan ilmiah mendalam tentang isu-isu terpenting dan pilihan-pilihan kebijaksanaan pembangunan yang berkelanjutan yang dihadapi Indonesia dan masyarakat dunia secara keseluruhan. Riset tersebut harus diorganisasikan dalam suatu kerangka kerja yang bersifat fleksibel dan multidisiplin untuk mengkoordinasikan aktivitas-aktivitas ilmiah terkait dalam suatu program kerja.
Mencari metoda terbaik dalam prediksi iklim adalah salah satu kegiatan yang akhir-akhir ini giat dilakukan oleh para peneliti atmosfer/iklim. Bagaimana tidak, berbagai pihak menuntut diberikannya informasi prediksi iklim yang lebih cepat dan akurat. Bahkan beberapa pihak lain menuntut tersedianya prediksi kondisi atmosfer dengan rentang waktu harian/jam-an dalam skala ruang yang lebih kecil. Kebutuhan ini mendorong berkembangnya metoda-metoda prediksi cuaca/iklim baik berbasis metoda statistik maupun metoda dinamik.
Berlandaskan riset, prakiraan musiman dan ramalan anomali curah hujan dapat dilakukan untuk kala waktu beberapa bulan bahkan hingga 1 tahun kedepan. Tingkat kesalahan prakiraan bergantung pada persistensi bulanan dan variasi lokal serta kesahihan suatu model. Tanpa terkecuali, perbaikan diharapkan berkesinambungan. Namun pengembangan dasar pengetahuan sistem iklim kadang kala lamban dan dapat mengakibatkan kesalahan tindak penanggulangan bencana akibat munculnya kondisi iklim ekstrim. Kesalahan itu dapat terjadi di tingkat pengambil kebijakan, peneliti dan masyarakat.
Mengingat bahwa masalah aplikasi klimatik sektoral umumnya berkaitan dengan kawasan berukuran beberapa kilometer saja, maka upaya mensimulasikan dan memprediksi iklim kawasan tersebut membutuhkan model-model iklim dengan resolusi spasial yang tinggi.
Busuioc dkk. (2001) menyebutkan berbagai masalah yang muncul dalam proses validasi model iklim. Salah satu kesulitan yang dihadapi dalam proses validasi adalah perbedaan antara skala ruang dalam kotak grid LAM dengan pengukuran dari berbagai titik-titik pengamatan.
Output dan manfaat yang dihasilkan dari penelitian ini adalah :
• Model iklim yang sudah teruji pada daerah penelitian, sehingga dapat dijadikan sebagai alat untuk digunakan dalam pendugaan kondisi iklim yang akan datang;
• Melengkapi bahan-bahan dasar kebijakan dalam program perencanaan baik yang berkaitan dengan ketahanan pangan, industri, tranportasi, tata ruang, ketersedian air, lingkungan maupun kesehatan lingkungan.
Metodologi
Anomali iklim cenderung meningkat intensitas, frekuensi, durasi dan wilayah yang terkena dampaknya memerlukan langkah-langkah antisipasi, agar dampak tersebut dapat diminimalkan, melalui : 1) penyesuaian dan 2) modifikasi input untuk menekan resiko. Metodologi penelitian lebih ditekankan pada penyesuaian terhadap perilaku anomali iklim dengan meningkatkan kemampuan analisis model mensimulasi perilaku iklim dengan kinerja yang lebih baik. Ada dua hal yang diperlukan untuk penyelesaian persoalan tersebut, yaitu analisis prakiraan menggunakan model dinamis dan model statistik.
Hasil dan Analysis
Metode ANFIS menunjukkan hasil kesesuaian antara curah hujan prediksi dan curah hujan pengamatan dengan nilai korelasi berkisar antara 0.34 s/d 0.8. Metode statistik filter kalman dengan korelasi berkisar antara 61.5 s/d 89.5. Sedang model dinamis (Model Area Terabatas, dengan resolusi 7.5 x 7.5 km) menunjukkan korelasi antara 0.02 s/d 0.73 untuk daerah Sumatera Barat.
Daftar Pustaka
1.Busuioc, A., D. Chen, and C. Hellstrom, 2001: Performance of statistical downscaling models in GCM validation and regional climate change estimates: Application for Swedish precipitation. Int. J. Climatology, 21, 557–578.
2.Dupe, Z. L. dan A. Zahuriansyah Djaya, 2002. Variabilitas Hujan Kota Bandung dan Korelasinya dengan El Nino. Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 2, LAPAN- Bandung, 21 Agustus 2001.
3.Dupe, Z. L. dan The Houw Liong, 2001. Prediction Nino 3.5 SST Anomaly. Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 1, LAPAN- Bandung, 11 Juli 2000.
4.Dupe, Z. L.; Hadi W. T., Atika L: El Nino/La Nina Forecasting Using Adaptive Neuro-Fuzzy Inference System (ANFIS) . Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 3 , LAPAN- Bandung, 31 Juli 2002 (dalam persiapan ).
5.Ratag, M. A., 2002: Aplikasi Analisis Waktu-Frekuensi Wavelet untuk Validasi Luaran dan Verifikasi Model Iklim Area Terbatas: Studi kasus Curah Hujan di Bandung. Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 2 , LAPAN- Bandung, 21 Agustus 2001.
Bambang Siswanto1), Zadrach L. Dupe2), Yanto Sugianto3), dan Yunus Swarinoto4)
1)Pusat Pemanfaatan Sains Atmosfer dan Iklim, LAPAN
2)Departement Geofisika dan Meteorologi, Institut Teknologi Bandung
3)Pusat Penelitian Tanah dan Agroklimat, Departemen Pertanian
4)Badan Meteorologi dan Geofisika
Email: siswanto@bdg.lapan.go.id, bambang_siswanto@hotmail.com
Pendahuluan
Riset pengetahuan cuaca dan iklim termasuk aplikasinya, memberikan wawasan ilmiah mendalam tentang isu-isu terpenting dan pilihan-pilihan kebijaksanaan pembangunan yang berkelanjutan yang dihadapi Indonesia dan masyarakat dunia secara keseluruhan. Riset tersebut harus diorganisasikan dalam suatu kerangka kerja yang bersifat fleksibel dan multidisiplin untuk mengkoordinasikan aktivitas-aktivitas ilmiah terkait dalam suatu program kerja.
Mencari metoda terbaik dalam prediksi iklim adalah salah satu kegiatan yang akhir-akhir ini giat dilakukan oleh para peneliti atmosfer/iklim. Bagaimana tidak, berbagai pihak menuntut diberikannya informasi prediksi iklim yang lebih cepat dan akurat. Bahkan beberapa pihak lain menuntut tersedianya prediksi kondisi atmosfer dengan rentang waktu harian/jam-an dalam skala ruang yang lebih kecil. Kebutuhan ini mendorong berkembangnya metoda-metoda prediksi cuaca/iklim baik berbasis metoda statistik maupun metoda dinamik.
Berlandaskan riset, prakiraan musiman dan ramalan anomali curah hujan dapat dilakukan untuk kala waktu beberapa bulan bahkan hingga 1 tahun kedepan. Tingkat kesalahan prakiraan bergantung pada persistensi bulanan dan variasi lokal serta kesahihan suatu model. Tanpa terkecuali, perbaikan diharapkan berkesinambungan. Namun pengembangan dasar pengetahuan sistem iklim kadang kala lamban dan dapat mengakibatkan kesalahan tindak penanggulangan bencana akibat munculnya kondisi iklim ekstrim. Kesalahan itu dapat terjadi di tingkat pengambil kebijakan, peneliti dan masyarakat.
Mengingat bahwa masalah aplikasi klimatik sektoral umumnya berkaitan dengan kawasan berukuran beberapa kilometer saja, maka upaya mensimulasikan dan memprediksi iklim kawasan tersebut membutuhkan model-model iklim dengan resolusi spasial yang tinggi.
Busuioc dkk. (2001) menyebutkan berbagai masalah yang muncul dalam proses validasi model iklim. Salah satu kesulitan yang dihadapi dalam proses validasi adalah perbedaan antara skala ruang dalam kotak grid LAM dengan pengukuran dari berbagai titik-titik pengamatan.
Output dan manfaat yang dihasilkan dari penelitian ini adalah :
• Model iklim yang sudah teruji pada daerah penelitian, sehingga dapat dijadikan sebagai alat untuk digunakan dalam pendugaan kondisi iklim yang akan datang;
• Melengkapi bahan-bahan dasar kebijakan dalam program perencanaan baik yang berkaitan dengan ketahanan pangan, industri, tranportasi, tata ruang, ketersedian air, lingkungan maupun kesehatan lingkungan.
Metodologi
Anomali iklim cenderung meningkat intensitas, frekuensi, durasi dan wilayah yang terkena dampaknya memerlukan langkah-langkah antisipasi, agar dampak tersebut dapat diminimalkan, melalui : 1) penyesuaian dan 2) modifikasi input untuk menekan resiko. Metodologi penelitian lebih ditekankan pada penyesuaian terhadap perilaku anomali iklim dengan meningkatkan kemampuan analisis model mensimulasi perilaku iklim dengan kinerja yang lebih baik. Ada dua hal yang diperlukan untuk penyelesaian persoalan tersebut, yaitu analisis prakiraan menggunakan model dinamis dan model statistik.
Hasil dan Analysis
Metode ANFIS menunjukkan hasil kesesuaian antara curah hujan prediksi dan curah hujan pengamatan dengan nilai korelasi berkisar antara 0.34 s/d 0.8. Metode statistik filter kalman dengan korelasi berkisar antara 61.5 s/d 89.5. Sedang model dinamis (Model Area Terabatas, dengan resolusi 7.5 x 7.5 km) menunjukkan korelasi antara 0.02 s/d 0.73 untuk daerah Sumatera Barat.
Daftar Pustaka
1.Busuioc, A., D. Chen, and C. Hellstrom, 2001: Performance of statistical downscaling models in GCM validation and regional climate change estimates: Application for Swedish precipitation. Int. J. Climatology, 21, 557–578.
2.Dupe, Z. L. dan A. Zahuriansyah Djaya, 2002. Variabilitas Hujan Kota Bandung dan Korelasinya dengan El Nino. Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 2, LAPAN- Bandung, 21 Agustus 2001.
3.Dupe, Z. L. dan The Houw Liong, 2001. Prediction Nino 3.5 SST Anomaly. Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 1, LAPAN- Bandung, 11 Juli 2000.
4.Dupe, Z. L.; Hadi W. T., Atika L: El Nino/La Nina Forecasting Using Adaptive Neuro-Fuzzy Inference System (ANFIS) . Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 3 , LAPAN- Bandung, 31 Juli 2002 (dalam persiapan ).
5.Ratag, M. A., 2002: Aplikasi Analisis Waktu-Frekuensi Wavelet untuk Validasi Luaran dan Verifikasi Model Iklim Area Terbatas: Studi kasus Curah Hujan di Bandung. Prosiding Temu Ilmiah Prediksi Cuaca dan Iklim Nasional 2 , LAPAN- Bandung, 21 Agustus 2001.
Subscribe to:
Posts (Atom)