Greetings « sainsfilteknologi:
'via Blog this'
Indonesia harus mampu mengembangkan sains dan teknologi yang ramah lingkungan sesuai dengan perkembangannya di tanah air, tanpa teknologi yang boros sumber alam dan energi.
Hal yang penting juga ialah memahami dan menghayati filsafat sains untuk bisa menyatakan kebenaran ilmiah dan bisa membedakannya dengan "kebenaran" yang diperoleh dengan cara lain.
The Houw Liong
http://LinkedIn.com/in/houwliong
31 December 2012
28 December 2012
25 December 2012
New Form of Quantum Computation Promises Showdown With Ordinary Computers
New Form of Quantum Computation Promises Showdown With Ordinary Computers:
You've heard the hype a hundred times: Physicists hope to someday build a whiz-bang quantum computer that can solve problems that would overwhelm an ordinary computer. Now, four separate teams have taken a step toward achieving such "quantum speed-up" by ...
You've heard the hype a hundred times: Physicists hope to someday build a whiz-bang quantum computer that can solve problems that would overwhelm an ordinary computer. Now, four separate teams have taken a step toward achieving such "quantum speed-up" by ...
22 December 2012
21 December 2012
El Niño-Southern Oscillation Myth 3: ENSO Has No Trend and Cannot Contribute to Long-Term Warming
El Niño-Southern Oscillation Myth 3: ENSO Has No Trend and Cannot Contribute to Long-Term Warming: Guest post by Bob Tisdale This is the 3rd part of a series of posts that present myths and misunderstandings about the tropical Pacific processes that herald themselves during El Niño and La Niña events. In the posts, I’m simply … Continue reading →
18 December 2012
17 December 2012
14 December 2012
IPCC AR5 draft leaked, contains game-changing admission of enhanced solar forcing
IPCC AR5 draft leaked, contains game-changing admission of enhanced solar forcing: UPDATE1: Andrew Revkin at the NYT weighs in, an semi endorses the leak, see update below – Anthony UPDATE2: Alternate links have been sent to me, should go faster now. – Anthony Full AR5 draft leaked here, contains game-changing admission … Continue reading →
The Truth About 2012: Killer Solar Flares Are a Physical Impossibility
The Truth About 2012: Killer Solar Flares Are a Physical Impossibility:
NASA is trying to make sure that no one is taking the 2012 doomsday nonsense seriously, and just put out this video today detailing how a gigantic “killer solar flare” just ain’t gonna happen. Dr. Alex Young from the Goddard Space Flight Center explains how the Sun’s regular 11-year solar cycle is expected to peak in 2013 and 2014, not on December 21 of this year. Plus, this current solar cycle has been kind of a dud as far as wild activity goes, and scientists are not expecting the peak of this cycle to even be as strong as the previous one, which was rather mild.
(...)
Read the rest of The Truth About 2012: Killer Solar Flares Are a Physical Impossibility (88 words)
© nancy for Universe Today, 2012. | Permalink | 15 comments |
Post tags: 2012, solar flares, sun
Feed enhanced by Better Feed from Ozh
NASA is trying to make sure that no one is taking the 2012 doomsday nonsense seriously, and just put out this video today detailing how a gigantic “killer solar flare” just ain’t gonna happen. Dr. Alex Young from the Goddard Space Flight Center explains how the Sun’s regular 11-year solar cycle is expected to peak in 2013 and 2014, not on December 21 of this year. Plus, this current solar cycle has been kind of a dud as far as wild activity goes, and scientists are not expecting the peak of this cycle to even be as strong as the previous one, which was rather mild.
(...)
Read the rest of The Truth About 2012: Killer Solar Flares Are a Physical Impossibility (88 words)
© nancy for Universe Today, 2012. | Permalink | 15 comments |
Post tags: 2012, solar flares, sun
Feed enhanced by Better Feed from Ozh
12 December 2012
08 December 2012
03 December 2012
Energy and our Future
http://www.theoildrum.com/
27 November 2012
23 November 2012
22 November 2012
29 October 2012
Origins of The Universe - Stephen Hawking - Is God...
AGUNG ANGGONO: Origins of The Universe - Stephen Hawking - Is God...: This is only a translation from Stephen Hawking's lecture but this is very interesting. He explain a very difficult subject in a simple. wa...
26 October 2012
25 October 2012
19 October 2012
12 October 2012
28 September 2012
27 September 2012
25 September 2012
21 September 2012
20 September 2012
16 September 2012
11 September 2012
06 September 2012
03 September 2012
01 September 2012
30 August 2012
23 August 2012
20 August 2012
19 August 2012
16 August 2012
11 August 2012
09 August 2012
Pengaruh Flare dan CME yang Kuat pada Sistem Komunikasi dan Navigasi
Pengaruh Flare dan CME yang Kuat
The Houw Liong
Pada puncak aktivitas matahari Smax(sunspot maximum) kemungkinannya lebih besar untuk terjadinya flare dan CME (coronal mass ejection) yang kuat. Jika semburan plasma ini mengarah ke Bumi maka berkas partikel bermuatannya bisa merusak sistem instrumentasi yang ada pada satelit komunikasi dan navigasi (GPS) dan untuk daerah jauh dari khatulistiwa , arus induksi yang ditimbulkannya dapat merusak jaringan listrik/ transformator tegangan tinggi seperti yang terjadi di Kanada pada tahun 1859 yang disebut effek Carrington.
Kehidupan modern sangat bergantung pada sistem navigasi dan komunikasi yang menggunakan satelit, sehingga jika semburan plasma yang kuat mengarah ke Bumi maka bencana yang ditimbulkan akan sangat besar.
Solar Activity | sainsfilteknologi:
'via Blog this'
07 August 2012
03 August 2012
02 August 2012
31 July 2012
26 July 2012
24 July 2012
20 July 2012
19 July 2012
INTELEJENSIA BUATAN PADA PERMAINAN BRIDGE DENGAN METODE RULE BASED
Tugas Akhir , ITHB, 2012 .
INTELEJENSIA BUATAN PADA PERMAINAN BRIDGE DENGAN METODE RULE BASED.
Rein Martha
1109014
Pembimbing 1 :
Prof. Dr. The Houw Liong
Pembimbing 2 :
Ken Ratri Retno W, S.Kom, M.T.
ABSTRAKSI
Permainan bridge adalah permainan kartu dengan menggunakan 52 kartu, dan diperlukan 4 pemain untuk memainkannya. Walaupun sudah banyak pertandingan bridge yang diselenggarakan di manca negara, masih sedikit aplikasi yang permainan bridge, apalagi aplikasi bridge yang memakai intelejensia buatan di dalamnya. Dengan dibuatnya aplikasi permainan bridge ini diharapkan dapat memperlihatkan tingkat kesulitan intelejensia buatan yang akan dibuat.
Intelejensia buatan pada permainan bridge tidak pernah dapat dibuat sangat pintar, ini disebabkan karena tidak seperti permainan catur atau checker permainan kartu terutama bridge salah seorang pemain hanya bisa mengetahui informasi kartu yang ada di tangannya saja. Karena itu kemungkinan yang didapat dari kartu yang tidak terlihat sangatlah banyak dan tidak dapat diproses semuanya. Untuk aplikasi ini, intelejensia buatan yang dibuat menggunakan metode rule based dengan menggunakan strategi dari para pakar yang sering bermain bridge.
Pada tahap bidding, peraturan yang dipakai menggunakan sistem High Card Point dan Distribution Point, lalu digunakan referensi dari William’s Bridge Club untuk proses bidding sendiri. Pada tahap ini, intelejensia buatan akan melakukan opening bid, respond bid, dan final bid. Tiap bid yang dilakukan akan menghitung HCP dan DP juga akan mencek bid partner untuk respond bid dan final bid.
Pada tahap play, strategi yang dilakukan adalah finesse dan drop, finesse akan berusaha memenangkan trik dengan kartu yang rendah, dan drop akan memenangkan trik terus menerus dengan kombinasi kartu-kartu tertinggi. Selain itu juga strategi standar seperti trump, mengalah pada partner akan dilakukan seperti layaknya pemain pakar.
Kata kunci : bridge, intelejensia buatan, metode rule based.
ABSTRACT :
Bridge is a game using a standard playing card game, it need 4 player to play the game. Even there is a lot of bridge tournament in the world, the application for the game itself still rarely seen, moreove an bridge application with an artificial intelligence in it. With this bridge game application, it will be expect to show the ingenuity of the artificial intelligence.
In bridge the artificial intelligence never developed to be very smart, the problem is not like chess or checker all card games, especially bridge the player can only know information about the cards in their hand, therefore the possibility of the outcome is so many and it almost impossible to process all of it with a low amount of time and an average computer. At this game, the artificial intelligence developed using a rule based method utilized strategy from the expert in the bridge world.
At bidding phase, the rule used a High Card Point and Distribution Point system, with a reference from William’s Bridge Club for the bidding process itself. At this phase the artificial intelligence will make an opening bid, respond bid, and final bid. Every bid will be made from HCP and DP calculation and for the respond and final bid, it will check the partner bid too.
At the play phase strategy that will be use is finesse and drop, finesse will be use to win a trick with low point card, and drop will be use to win trick consecutively with the highest point card combination. Beside it, a standard strategy like trump, give partner to win trick were implemented like an expert play.
Keywords: Bridge, Artificial Intelligence, Rule Based Method.
13 July 2012
12 July 2012
THE PREDICTION OF DENGUE HAEMORRAGIC FEVER (DHF) IN CIMAHI USING HYBRID GENETIC ALGORITHM AND FUZZY LOGIC
International Conference on Informatics and Computational Intelligence, Bandung, 2011
THE PREDICTION OF DENGUE HAEMORRAGIC FEVER (DHF) IN CIMAHI
USING HYBRID GENETIC ALGORITHM AND FUZZY LOGIC
Fhira Nhita, ST1, Prof.Thee Houw Liong2, Shaufiah, MT3
1,3 Informatics Program Study in Telkom Institute of Technology
2Bandung Institute of Technology
1fhiranhita@yahoo.com, 2houwthee@yahoo.co.id, 3shaufiah@gmail.com
Abstrak.
Kejadian Demam Berdarah Dengue (DBD) merupakan masalah nasional di bidang kesehatan. Setiap tahun angka kesakitan DBD masih tinggi. Khususnya di Cimahi, salah satu kota di provinsi Jawa Barat dimana angka kesakitan (Incidence Rate) tahun 2005 hingga 2010 di atas standar yang ditentukan Departemen Kesehatan RI.
Banyak faktor yang mempengaruhi kejadian DBD, antara lain iklim dan perilaku hidup bersih dan sehat (PHBS). Oleh karena itu, dalam penelitian ini, dibangun Sistem Prediksi demam berdarah yang dikaitkan dengan iklim, yang diharapkan bisa membantu memberikan informasi bagi Departemen Kesehatan tentang prediksi resiko DBD di tahun yang akan datang, sehingga Departemen Kesehatan dapat mengambil langkah preventif untuk mengurangi angka kesakitan DBD.
Sistem Prediksi yang dibangun dengan hybrid algorithm yaitu Algoritma Genetika dan Fuzzy Logic mampu menghasilkan akurasi testing 100% dalam memprediksi kondisi DBD di 6 bulan pertama pada tahun 2009 dan 2010 di kecamatan Cimahi Utara dan Cimahi Tengah. Sedangkan pada Cimahi Selatan diperoleh hasil prediksi 6 bulan pertama di tahun 2009 sebesar 100% tetapi pada tahun 2010 terjadi penurunan akurasi.
Kata kunci: demam berdarah, cimahi, algoritma genetika, logika fuzzy, system prediksi
Abstract
The incidence of Dengue Haemorrhagic Fever (DHF) is a national health problem in Indonesia. Every year dengue morbidity is still high. Particularly in Cimahi, one of the city in West Java province where the morbidity rate (Incidence Rate) 2005 to 2010 in the above national standard.
Many factors can affect the incidence of dengue, among others, climate and living behavioral. Therefore, the development of DHF Prediction System which is associated with a climate that is expected to help provide information for the Department of Health about dengue risk prediction in the coming year, so the Health Ministry can take preventive action to reduce morbidity of DHF.
The Prediction System that was built with a hybrid algorithm which Genetic Algorithms and Fuzzy Logic is able to obtain 100% testing accuracy in predicting the condition of dengue in the first 6 months in 2009 and 2010 in North Cimahi and Central Cimahi. While in South Cimahi, the prediction results obtained in the first 6 months of 2009 amounted to 100% but in 2010 a decline in accuracy.
04 July 2012
03 July 2012
26 June 2012
23 June 2012
22 June 2012
20 June 2012
18 June 2012
16 June 2012
14 June 2012
Fuzzy Hidden Markov Models for Indonesian Speech Classification
Fuzzy Hidden Markov Models for Indonesian Speech Classification
Intan Nurma Yulita, Houw Liong The, and Adiwijaya
Preview | Full Text (PDF 236KB) Intan Nurma Yulita, Houw Liong The, and Adiwijaya
Journal of Advanced Computational Intelligence and Intelligent Informatics | Most downloaded:
'via Blog this'
13 June 2012
Forget global warming - it's Cycle 25 we need to worry about (and if NASA scientists are right the Thames will be freezing over again) | Mail Online
12 June 2012
06 June 2012
01 June 2012
29 May 2012
23 May 2012
22 May 2012
20 May 2012
19 May 2012
Fuzzy Hidden Markov Models for Indonesian Speech Classification
Fuzzy Hidden Markov Models for Indonesian Speech Classification:
'via Blog this'
*Faculty of Informatics, Telkom Institute of Technology
Indonesia has many tribes, so that there are many dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system must be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. The solution is a new combination of fuzzy on hidden Markov models. The result shows a new version of fuzzy hiddenMarkovmodels is better than hidden Markov model.
'via Blog this'
Fuzzy Hidden Markov Models for Indonesian Speech Classification
Intan Nurma Yulita*,** Houw Liong The**, and Adiwijaya**
*Faculty of Informatics, Telkom Institute of Technology
**Graduate Faculty, Telkom Institute of Technology, Jalan Telekomunikasi No.1, DayeuhKolot, Jawa Barat 40257, Indonesia
Received: September 15, 2011
Accepted: November 15, 2011
Keywords: fuzzy logic, hidden Markov models, speech, classification, clustering
Journal ref: Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.3 pp. 381-387, 2012
Abstract
Indonesia has many tribes, so that there are many dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system must be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. The solution is a new combination of fuzzy on hidden Markov models. The result shows a new version of fuzzy hiddenMarkovmodels is better than hidden Markov model.
Reference
[1] S. D. Shenouda, F. W. Zaki, and A. Goneid, “Hybrid Fuzzy HMm System for Arabic Connectionist Speech Recognition,” Proc. of the 5th WSEAS Int. Conf. on Signal Processing, robotics and Automation, pp. 64-69, 2006.
[2] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc. of the IEEE, Vol.77, No.2, 1989.
[3] P.Melin, J. Urias, D. Solano, et al., “Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms,” Engineering Letters, Vol.13, No.2, 2006.
[4] L. Chen, S. Gunduz, and M. T. Ozsu, “Mixed Type Audio Classification with Support Vector Machine,” Proc. of the IEEE Int. Conf. on Multimedia and Expo, 2006.
[5] R. Halavati, S. B. Shouraki, M. Eshraghi, and M. Alemzadeh, “A Novel Fuzzy Approach to Speech Processing,” 5th Hybrid Intelligent Systems Conf., 2004.
[6] S. E. Levinson, L. R. Rabiner, A. E. Rosenberg, and J. G. Wilpon, “Interactive Clustering Techniques for Selecting Speaker-Independent Reference Templates For Isolated Word Recognition,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.Assp-27, 1979.
[7] B. H. Juang and L. R. Rabiner, “Fundamentals of Speech Recognition,” Prentice-Hall, 1993.
[8] B. H. Juang and L. R. Rabiner, “Hidden Markov Models for Speech Recognition,” Technometrics, Vol.33, No.3, pp. 251-272, 1991.
[9] J. Zeng and Z.-Q. Liu, “Interval Type-2 Fuzzy Hidden Markov Models,” Proc. of Int. Conf. on Fuzzy Systems, Vol.2, pp. 1123-1128, 2004.
[10] J. Zeng and Z.-Q. Liu, “Type-2 Fuzzy Hidden Markov Models to Phoneme Recognition,” Proc. of the 17th Int. Conf. on Pattern Recognition, 2004.
[11] H. Riza and O. Riandi, “Toward Asian Speech Translation System: Developing Speech Recognition and Machine Translation for Indonesian Language,” Int. Joint Conf. on Natural Language Processing, 2008.
[12] D. P. Lestari, K. Iwano, and S. Furui, “A Larger Vocabulary Continuous Speech Recognition System for Indonesian Language,” 15th Indonesian Scientific Conf. in Japan Proceedings, 2006.
[13] H. Uguz, A. Ozturk, R. Saracoglu, and A. Arslan, “A Biomedical System Based on Fuzzy Discrete HiddenMarkov Model for The Diagnosis of The Brain Diseases,” Expert SystemsWith Applications, Vol.35, pp. 1104-1114, 2008.
[14] S. Kusumadewi, H. Purnomo, and A. Logika, “Fuzzy untuk Pendukung Keputusan,” Penerbit Graha Ilmu, pp. 84-85, 2004.
17 May 2012
15 May 2012
14 May 2012
13 May 2012
10 May 2012
SPECIAL REPORT: More Than 1000 International Scientists Dissent Over Man-Made Global Warming Claims - Challenge UN IPCC & Gore | Climate Depot
06 May 2012
01 May 2012
28 April 2012
26 April 2012
23 April 2012
20 April 2012
19 April 2012
17 April 2012
15 April 2012
14 April 2012
12 April 2012
09 April 2012
08 April 2012
07 April 2012
Formal Theory of Creativity and Fun and Intrinsic Motivation Explains Science, Art, Music, Humor (Juergen Schmidhuber). Artificial Scientists, Artificial Artists, Developmental Robotics, Curiosity, Attention, Surprise, Novelty, Discovery, Open-Ended Learning, Formal Theory of Beauty, Creating Novel Patters
Formal Theory of Creativity and Fun and Intrinsic Motivation Explains Science, Art, Music, Humor (Juergen Schmidhuber). Artificial Scientists, Artificial Artists, Developmental Robotics, Curiosity, Attention, Surprise, Novelty, Discovery, Open-Ended Learning, Formal Theory of Beauty, Creating Novel Patters:
'via Blog this'
'via Blog this'
06 April 2012
05 April 2012
30 March 2012
29 March 2012
28 March 2012
Pancasila (politics) - Wikipedia, the free encyclopedia
Pancasila (politics) - Wikipedia, the free encyclopedia:
Filsafatnya benar dan bersifat universal, namun Indonesia belum bisa bangkit menjadi negara maju. Apa yang salah dalam menterjemahkan filsafat itu menjadi rencana yang operasional ? 'via Blog this'
Filsafatnya benar dan bersifat universal, namun Indonesia belum bisa bangkit menjadi negara maju. Apa yang salah dalam menterjemahkan filsafat itu menjadi rencana yang operasional ? 'via Blog this'
26 March 2012
24 March 2012
23 March 2012
22 March 2012
Population, area and economy affected by a 1 m sea level rise (global and regional estimates, based on today's situation) | UNEP/GRID-Arendal - Maps & Graphics library
20 March 2012
19 March 2012
18 March 2012
16 March 2012
15 March 2012
13 March 2012
12 March 2012
09 March 2012
08 March 2012
07 March 2012
06 March 2012
29 February 2012
28 February 2012
27 February 2012
24 February 2012
23 February 2012
22 February 2012
17 February 2012
15 February 2012
Predicting Students’ Academic Success Using Artificial Neural Network
PREDICTING STUDENTS’ ACADEMIC SUCCESS USING ARTIFICIAL NEURAL NETWORK
A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF TELKOM INSTITUTE OF TECHNOLOGY
BY
ALDI RAMDHANI HERAWAN
213100001
Prof. The Houw Liong, Ph.D
Supervisor
Shaufiah, M.T.
Co-Supervisor
ABSTRACT
Predicting Students’ Academic Success Using Artificial Neural Network
Aldi Ramdhani Herawan
Supervisor : Prof. The Houw Liong, Ph.D
Co-Supervisor : Syaufiah, M.T
In an effort to improve the quality and competitiveness of scholars, universities must have specific strategies to achieve its objectives. Implementation of these strategies would require preparation and adjustments to the problem at hand. For that matter, need early identification what factors affect the success of a student's study. The success of a student's study can be viewed with a grade point average (GPA) student. This study seeks to identify what factors are affecting the success of a student's study indicated by the GPA. These factors are then used as input in the GPA prediction model using Artificial Neural Network (ANN). This study was also conducted on the reduction of data dimension using Principal Component Analysis (PCA). Finally, this study compares the results of predicted GPA, with the input data that has not been reduced and data have been reduced.
For variables JUMLAH MATA KULIAH (number of courses) , JUMLAH SKS (sum of credits taken), JUMLAH SKS LULUS (sum of credits passed), and JUMLAH MUTU (average grades in the first year), component coefficients which measure correlations with GPA(average grades in the second year) are extracted. Component coefficient values for each variable are greater than 0.50, and the highest value is 0.958 for JUMLAH SKS LULUS. This shows that component extracted is evenly affected by these variables.
Keywords: Students’ Success, GPA, Prediction, Artificial Neural Network (ANN), Principal Component Analysis (PCA)
Prediction System of Economic Crisis in Indonesia using Time Series Analysis and System Dynamic Optimized by Genetic Algorithm
Master Technology in Informatics, IT Telkom, Bandung , 2012
Prediction System of Economic Crisis in Indonesia using Time Series Analysis and System Dynamic Optimized by Genetic Algorithm
Siti Sa’adah.
Supervisor: Prof. The Houw Liong,
Co-Supervisor: Adiwijaya, MSi
Abstract
Economic crisis that had happened at 1997-1998 in Indonesia stimulate the researchers to study further because economic that came from words ‘ecos’ and ‘nomos’ means value of life can be used as economic indicators. The economic indicators are GDP (Gross Domestic Product), inflation, population, and oil import per year from 1980-2011, will be tested using time series analysis and system dynamic optimized by algorithm genetic.
The results are 93% - 99% accuracy in training and up to 90% accuracy for testing. These results proved that, the prediction system able to fit data in finding historical optimal and small error. Error that had been gotten in this system was caused by the time series data that been used is too short and economic is a chaotic complex system, so the error cannot be avoided.
14 February 2012
13 February 2012
INDONESIAN SPEECH RECOGNITION SYSTEM USING DISCRIMINANT FEATURE EXTRACTION – NEURAL PREDICTIVE CODING (DFE-NPC) AND PROBABILISTIC NEURAL NETWORK
FEBRUARY 2012
INDONESIAN SPEECH RECOGNITION SYSTEM USING DISCRIMINANT FEATURE EXTRACTION – NEURAL PREDICTIVE CODING (DFE-NPC) AND PROBABILISTIC NEURAL NETWORK
A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF TELKOM INSTITUTE OF TECHNOLOGY
BY UNTARI NOVIA WISESTY 213100004
Prof. Dr. The Houw Liong Supervisor
Adiwijaya, SSi., MSi Co-Supervisor
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF INFORMATICS IN THE INFORMATICS STUDY PROGRAM
ABSTRACT
Along with advances in information technology, it has been developed the technology to facilitate human life, one of which is speech recognition. Speech recognition is widely applied to speech to text, speech to emotion, in order to make gadget and computer easier to use, or to help people with hearing disability. However, the development of speech recognition to produce the text from the input voice has not well developed because of time processing. This is certainly going to make the animators and engineers need more time using speech recognition. Therefore, it needs a method to solve the time processing problem and with a good accuracy. In this study proposes a speech recognition system using Discriminant Feature Extraction – Neural Predictive Coding (DFE-NPC) as feature extraction and Probabilistic Neural Network as recognition method. This system can accelerate time processing because it only uses one iteration in training process. Time processing of proposed method is decrease significantly until 1:95 compared to Fuzzy Hidden Markov Model. The best accuracy of the system is 100% when number of class is 2 and 3, and the worst one is 56% when number of class is 10. Keywords: Speech Recognition System, DFE-NPC, PNN, time processing.
A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF TELKOM INSTITUTE OF TECHNOLOGY
BY UNTARI NOVIA WISESTY 213100004
Prof. Dr. The Houw Liong Supervisor
Adiwijaya, SSi., MSi Co-Supervisor
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF INFORMATICS IN THE INFORMATICS STUDY PROGRAM
ABSTRACT
Along with advances in information technology, it has been developed the technology to facilitate human life, one of which is speech recognition. Speech recognition is widely applied to speech to text, speech to emotion, in order to make gadget and computer easier to use, or to help people with hearing disability. However, the development of speech recognition to produce the text from the input voice has not well developed because of time processing. This is certainly going to make the animators and engineers need more time using speech recognition. Therefore, it needs a method to solve the time processing problem and with a good accuracy. In this study proposes a speech recognition system using Discriminant Feature Extraction – Neural Predictive Coding (DFE-NPC) as feature extraction and Probabilistic Neural Network as recognition method. This system can accelerate time processing because it only uses one iteration in training process. Time processing of proposed method is decrease significantly until 1:95 compared to Fuzzy Hidden Markov Model. The best accuracy of the system is 100% when number of class is 2 and 3, and the worst one is 56% when number of class is 10. Keywords: Speech Recognition System, DFE-NPC, PNN, time processing.
11 February 2012
10 February 2012
09 February 2012
07 February 2012
30 January 2012
28 January 2012
Sun Unleashes Biggest Solar Flare Yet of 2012 | Solar Flares & Coronal Mass Ejections | Space Weather, Northern Lights & Sun Storms | Space.com
27 January 2012
26 January 2012
21 January 2012
20 January 2012
19 January 2012
18 January 2012
14 January 2012
12 January 2012
11 January 2012
Machine Learning - complete course notes
Stanford's machine learning course presented by Professor Andrew Ng and originally posted on the ml-class.org website during the fall 2011 semester
Machine Learning - complete course notes:
'via Blog this'
Machine Learning - complete course notes:
'via Blog this'
10 January 2012
09 January 2012
08 January 2012
07 January 2012
06 January 2012
04 January 2012
Fuzzy Hidden Markov Models For Indonesian Speech Classification
World Congress of International Fuzzy System Association and Asia Fuzzy System Society International Conference, Surabaya-Bali, 2011
Fuzzy Hidden Markov Models For Indonesian Speech Classification
Intan Nurma Yulita 1), The Houw Liong 2), Adiwijaya 3)
Graduate Faculty, Telkom Institute of Technology
Jalan Telekomunikasi No.1, Dayeuhkolot, Jawa Barat, Indonesia
Email: intanurma@gmail.com, houwthee@yahoo.co.id, adw@ittelkom.ac.id
Abstract
Indonesia has a lot of tribe, so that there are a lot of dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. This study designs the solution of the different characteristics for Indonesian speech classification. The solution combines Fuzzy on Hidden Markov Models. The new design of fuzzy Hidden Markov Models will be proposed in this study. The models will consist of Fuzzy C-Means Clustering which will be designed to substitute the vector quantization process and a new forward and backward method to handle the membership degree of data. The result shows FHMM is better than HMM.
Keywords: Fuzzy, Hidden Markov Models, Indonesian, Speech, Classification, Clustering
Fuzzy Hidden Markov Models For Indonesian Speech Classification
Intan Nurma Yulita 1), The Houw Liong 2), Adiwijaya 3)
Graduate Faculty, Telkom Institute of Technology
Jalan Telekomunikasi No.1, Dayeuhkolot, Jawa Barat, Indonesia
Email: intanurma@gmail.com, houwthee@yahoo.co.id, adw@ittelkom.ac.id
Abstract
Indonesia has a lot of tribe, so that there are a lot of dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. This study designs the solution of the different characteristics for Indonesian speech classification. The solution combines Fuzzy on Hidden Markov Models. The new design of fuzzy Hidden Markov Models will be proposed in this study. The models will consist of Fuzzy C-Means Clustering which will be designed to substitute the vector quantization process and a new forward and backward method to handle the membership degree of data. The result shows FHMM is better than HMM.
Keywords: Fuzzy, Hidden Markov Models, Indonesian, Speech, Classification, Clustering
THE PREDICTION OF DENGUE HAEMORRAGIC FEVER (DHF) IN CIMAHI USING HYBRID GENETIC ALGORITHM AND FUZZY LOGIC
International Conference on Informatics and Computational Intelligence, Bandung, 2011
THE PREDICTION OF DENGUE HAEMORRAGIC FEVER (DHF) IN CIMAHI USING HYBRID GENETIC ALGORITHM AND FUZZY LOGIC
Fhira Nhita,ST 1), Prof.Thee Houw Liong 2), Shaufiah,MT 3)
1,3 Informatics Program Study in Telkom Institute of Technology 2Bandung Institute of Technology
1)fhiranhita@yahoo.com, 2)thehl007@gmail.com, 3)shaufiah@gmail.com
Abstract
The incidence of Dengue Haemorrhagic Fever (DHF) is a national health problem in Indonesia. Every year dengue morbidity is still high. Particularly in Cimahi, one of the city in West Java province where the morbidity rate (Incidence Rate) 2005 to 2010 in the above national standard. Many factors can affect the incidence of dengue, among others, climate and living behavioral. Therefore, the development of DHF Prediction System which is associated with a climate that is expected to help provide information for the Department of Health about dengue risk prediction in the coming year, so the Health Ministry can take preventive action to reduce morbidity of DHF. The Prediction System that was built with a hybrid algorithm which Genetic Algorithms and Fuzzy Logic is able to obtain 100% testing accuracy in predicting the condition of dengue in the first 6 months in 2009 and 2010 in North Cimahi and Central Cimahi. While in South Cimahi, the prediction results obtained in the first 6 months of 2009 amounted to 100% but in 2010 a decline in accuracy.
Keywords: dengue haemorrhagic fever, cimahi, genetic algorithm, fuzzy logic, prediction system
Abstrak
Kejadian Demam Berdarah Dengue (DBD) merupakan masalah nasional di bidang kesehatan. Setiap tahun angka kesakitan DBD masih tinggi. Khususnya di Cimahi, salah satu kota di provinsi Jawa Barat dimana angka kesakitan (Incidence Rate) tahun 2005 hingga 2010 di atas standar yang ditentukan Departemen Kesehatan RI. Banyak faktor yang mempengaruhi kejadian DBD, antara lain iklim dan perilaku hidup bersih dan sehat (PHBS). Oleh karena itu, dalam penelitian ini, dibangun Sistem Prediksi demam berdarah yang dikaitkan dengan iklim, yang diharapkan bisa membantu memberikan informasi bagi Departemen Kesehatan tentang prediksi resiko DBD di tahun yang akan datang, sehingga Departemen Kesehatan dapat mengambil langkah preventif untuk mengurangi angka kesakitan DBD. Sistem Prediksi yang dibangun dengan hybrid algorithm yaitu Algoritma Genetika dan Fuzzy Logic mampu menghasilkan akurasi testing 100% dalam memprediksi kondisi DBD di 6 bulan pertama pada tahun 2009 dan 2010 di kecamatan Cimahi Utara dan Cimahi Tengah. Sedangkan pada Cimahi Selatan diperoleh hasil prediksi 6 bulan pertama di tahun 2009 sebesar 100% tetapi pada tahun 2010 terjadi penurunan akurasi. Kata kunci: demam berdarah, cimahi, algoritma genetika, logika fuzzy, system prediksi
THE PREDICTION OF DENGUE HAEMORRAGIC FEVER (DHF) IN CIMAHI USING HYBRID GENETIC ALGORITHM AND FUZZY LOGIC
Fhira Nhita,ST 1), Prof.Thee Houw Liong 2), Shaufiah,MT 3)
1,3 Informatics Program Study in Telkom Institute of Technology 2Bandung Institute of Technology
1)fhiranhita@yahoo.com, 2)thehl007@gmail.com, 3)shaufiah@gmail.com
Abstract
The incidence of Dengue Haemorrhagic Fever (DHF) is a national health problem in Indonesia. Every year dengue morbidity is still high. Particularly in Cimahi, one of the city in West Java province where the morbidity rate (Incidence Rate) 2005 to 2010 in the above national standard. Many factors can affect the incidence of dengue, among others, climate and living behavioral. Therefore, the development of DHF Prediction System which is associated with a climate that is expected to help provide information for the Department of Health about dengue risk prediction in the coming year, so the Health Ministry can take preventive action to reduce morbidity of DHF. The Prediction System that was built with a hybrid algorithm which Genetic Algorithms and Fuzzy Logic is able to obtain 100% testing accuracy in predicting the condition of dengue in the first 6 months in 2009 and 2010 in North Cimahi and Central Cimahi. While in South Cimahi, the prediction results obtained in the first 6 months of 2009 amounted to 100% but in 2010 a decline in accuracy.
Keywords: dengue haemorrhagic fever, cimahi, genetic algorithm, fuzzy logic, prediction system
Abstrak
Kejadian Demam Berdarah Dengue (DBD) merupakan masalah nasional di bidang kesehatan. Setiap tahun angka kesakitan DBD masih tinggi. Khususnya di Cimahi, salah satu kota di provinsi Jawa Barat dimana angka kesakitan (Incidence Rate) tahun 2005 hingga 2010 di atas standar yang ditentukan Departemen Kesehatan RI. Banyak faktor yang mempengaruhi kejadian DBD, antara lain iklim dan perilaku hidup bersih dan sehat (PHBS). Oleh karena itu, dalam penelitian ini, dibangun Sistem Prediksi demam berdarah yang dikaitkan dengan iklim, yang diharapkan bisa membantu memberikan informasi bagi Departemen Kesehatan tentang prediksi resiko DBD di tahun yang akan datang, sehingga Departemen Kesehatan dapat mengambil langkah preventif untuk mengurangi angka kesakitan DBD. Sistem Prediksi yang dibangun dengan hybrid algorithm yaitu Algoritma Genetika dan Fuzzy Logic mampu menghasilkan akurasi testing 100% dalam memprediksi kondisi DBD di 6 bulan pertama pada tahun 2009 dan 2010 di kecamatan Cimahi Utara dan Cimahi Tengah. Sedangkan pada Cimahi Selatan diperoleh hasil prediksi 6 bulan pertama di tahun 2009 sebesar 100% tetapi pada tahun 2010 terjadi penurunan akurasi. Kata kunci: demam berdarah, cimahi, algoritma genetika, logika fuzzy, system prediksi
01 January 2012
Subscribe to:
Posts (Atom)