Indonesia - TH Liong Paper for Monsoon RT (Final Preview):
'via Blog this'
Indonesia harus mampu mengembangkan sains dan teknologi yang ramah lingkungan sesuai dengan perkembangannya di tanah air, tanpa teknologi yang boros sumber alam dan energi.
Hal yang penting juga ialah memahami dan menghayati filsafat sains untuk bisa menyatakan kebenaran ilmiah dan bisa membedakannya dengan "kebenaran" yang diperoleh dengan cara lain.
The Houw Liong
http://LinkedIn.com/in/houwliong
29 May 2012
23 May 2012
22 May 2012
20 May 2012
19 May 2012
Fuzzy Hidden Markov Models for Indonesian Speech Classification
Fuzzy Hidden Markov Models for Indonesian Speech Classification:
'via Blog this'
*Faculty of Informatics, Telkom Institute of Technology
Indonesia has many tribes, so that there are many dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system must be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. The solution is a new combination of fuzzy on hidden Markov models. The result shows a new version of fuzzy hiddenMarkovmodels is better than hidden Markov model.
'via Blog this'
Fuzzy Hidden Markov Models for Indonesian Speech Classification
Intan Nurma Yulita*,** Houw Liong The**, and Adiwijaya**
*Faculty of Informatics, Telkom Institute of Technology
**Graduate Faculty, Telkom Institute of Technology, Jalan Telekomunikasi No.1, DayeuhKolot, Jawa Barat 40257, Indonesia
Received: September 15, 2011
Accepted: November 15, 2011
Keywords: fuzzy logic, hidden Markov models, speech, classification, clustering
Journal ref: Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.3 pp. 381-387, 2012
Abstract
Indonesia has many tribes, so that there are many dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system must be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. The solution is a new combination of fuzzy on hidden Markov models. The result shows a new version of fuzzy hiddenMarkovmodels is better than hidden Markov model.
Reference
[1] S. D. Shenouda, F. W. Zaki, and A. Goneid, “Hybrid Fuzzy HMm System for Arabic Connectionist Speech Recognition,” Proc. of the 5th WSEAS Int. Conf. on Signal Processing, robotics and Automation, pp. 64-69, 2006.
[2] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc. of the IEEE, Vol.77, No.2, 1989.
[3] P.Melin, J. Urias, D. Solano, et al., “Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms,” Engineering Letters, Vol.13, No.2, 2006.
[4] L. Chen, S. Gunduz, and M. T. Ozsu, “Mixed Type Audio Classification with Support Vector Machine,” Proc. of the IEEE Int. Conf. on Multimedia and Expo, 2006.
[5] R. Halavati, S. B. Shouraki, M. Eshraghi, and M. Alemzadeh, “A Novel Fuzzy Approach to Speech Processing,” 5th Hybrid Intelligent Systems Conf., 2004.
[6] S. E. Levinson, L. R. Rabiner, A. E. Rosenberg, and J. G. Wilpon, “Interactive Clustering Techniques for Selecting Speaker-Independent Reference Templates For Isolated Word Recognition,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.Assp-27, 1979.
[7] B. H. Juang and L. R. Rabiner, “Fundamentals of Speech Recognition,” Prentice-Hall, 1993.
[8] B. H. Juang and L. R. Rabiner, “Hidden Markov Models for Speech Recognition,” Technometrics, Vol.33, No.3, pp. 251-272, 1991.
[9] J. Zeng and Z.-Q. Liu, “Interval Type-2 Fuzzy Hidden Markov Models,” Proc. of Int. Conf. on Fuzzy Systems, Vol.2, pp. 1123-1128, 2004.
[10] J. Zeng and Z.-Q. Liu, “Type-2 Fuzzy Hidden Markov Models to Phoneme Recognition,” Proc. of the 17th Int. Conf. on Pattern Recognition, 2004.
[11] H. Riza and O. Riandi, “Toward Asian Speech Translation System: Developing Speech Recognition and Machine Translation for Indonesian Language,” Int. Joint Conf. on Natural Language Processing, 2008.
[12] D. P. Lestari, K. Iwano, and S. Furui, “A Larger Vocabulary Continuous Speech Recognition System for Indonesian Language,” 15th Indonesian Scientific Conf. in Japan Proceedings, 2006.
[13] H. Uguz, A. Ozturk, R. Saracoglu, and A. Arslan, “A Biomedical System Based on Fuzzy Discrete HiddenMarkov Model for The Diagnosis of The Brain Diseases,” Expert SystemsWith Applications, Vol.35, pp. 1104-1114, 2008.
[14] S. Kusumadewi, H. Purnomo, and A. Logika, “Fuzzy untuk Pendukung Keputusan,” Penerbit Graha Ilmu, pp. 84-85, 2004.
17 May 2012
15 May 2012
14 May 2012
13 May 2012
10 May 2012
SPECIAL REPORT: More Than 1000 International Scientists Dissent Over Man-Made Global Warming Claims - Challenge UN IPCC & Gore | Climate Depot
06 May 2012
01 May 2012
Subscribe to:
Posts (Atom)